Cargando…

Oligomorphic permutation groups /

The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cameron, Peter J. (Peter Jephson), 1947-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1990.
Colección:London Mathematical Society lecture note series ; 152.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836871705
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1990 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d YDX  |d REC  |d STF  |d M8D  |d INARC  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 715168038  |a 1044561832  |a 1045417203 
020 |a 9781107361638  |q (electronic bk.) 
020 |a 110736163X  |q (electronic bk.) 
020 |a 9780511549809  |q (e-book) 
020 |a 0511549806  |q (e-book) 
020 |z 0521388368 
020 |z 9780521388368 
029 1 |a DEBBG  |b BV043070166 
029 1 |a DEBSZ  |b 421267577 
029 1 |a GBVCP  |b 804536082 
035 |a (OCoLC)836871705  |z (OCoLC)715168038  |z (OCoLC)1044561832  |z (OCoLC)1045417203 
050 4 |a QA171  |b .C257 1990eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
084 |a *20B07  |2 msc 
084 |a 03C60  |2 msc 
084 |a 20-02  |2 msc 
049 |a UAMI 
100 1 |a Cameron, Peter J.  |q (Peter Jephson),  |d 1947- 
245 1 0 |a Oligomorphic permutation groups /  |c Peter J. Cameron. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1990. 
300 |a 1 online resource (viii, 160 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 152 
504 |a Includes bibliographical references (pages 145-154) and index. 
588 0 |a Print version record. 
520 |a The study of permutation groups has always been closely associated with that of highly symmetric structures. The objects considered here are countably infinite, but have only finitely many different substructures of any given finite size. They are precisely those structures which are determined by first-order logical axioms together with the assumption of countability. This book concerns such structures, their substructures and their automorphism groups. A wide range of techniques are used: group theory, combinatorics, Baire category and measure among them. The book arose from lectures given at a research symposium and retains their informal style, whilst including as well many recent results from a variety of sources. It concludes with exercises and unsolved research problems. 
505 0 |a Cover; Title; Copyright; Preface; Contents; 1 Background; 1.1 History and notation; 1.2 Permutation groups; 1.3 Model theory; 1.4 Category and measure; 1.5 Ramsey's Theorem; 2 Preliminaries; 2.1 The objects of study; 2.2 Reduction to the countable case; 2.3 The canonical relational structure; 2.4 Topology; 2.5 The Ryll-Nardzewski Theorem; 2.6 Homogeneous structures; 2.7 Strong amalgamation; 2.8 Appendix: Two proofs; 2.9 Appendix: Quantifier elimination and model completeness; 2.10 Appendix: The random graph; 3 Examples and growth rates; 3.1 Monotonicity; 3.2 Direct and wreath products 
505 8 |a 3.3 Some primitive groups3.4 Homogeneity and transitivity; 3.5 fn = fn + 1; 3.6 Growth rates; 3.7 Appendix: Cycle index; 3.8 Appendix: A graded algebra; 4 Subgroups; 4.1 Beginnings; 4.2 A theorem of Macpherson; 4.3 The random graph revisited; 4.4 Measure, continued; 4.5 Category; 4.6 Multicoloured sets; 4.7 Almost all automorphisms?; 4.8 Subgroups of small index; 4.9 Normal subgroups; 4.10 Appendix: The tree of an age; 5. Miscellaneous topics; 5.1 Jordan groups; 5.2 Going forth; 5.3 No-categorical, unstable structures; 5.4 An example; 5.5 Another example; 5.6 Oligomorphic projective groups 
505 8 |a 5.7 Orbits on infinite setsReferences; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Permutation groups. 
650 6 |a Groupes de permutations. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Permutation groups.  |2 fast  |0 (OCoLC)fst01058271 
650 1 7 |a Permutatiegroepen.  |2 gtt 
650 7 |a Groupes de permutations.  |2 ram 
776 0 8 |i Print version:  |a Cameron, Peter J. (Peter Jephson), 1947-  |t Oligomorphic permutation groups.  |d Cambridge ; New York : Cambridge University Press, 1990  |z 0521388368  |w (DLC) 91104659  |w (OCoLC)22158351 
830 0 |a London Mathematical Society lecture note series ;  |v 152. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552340  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10451941 
938 |a EBSCOhost  |b EBSC  |n 552340 
938 |a Internet Archive  |b INAR  |n oligomorphicperm0000came 
938 |a YBP Library Services  |b YANK  |n 10407414 
938 |a YBP Library Services  |b YANK  |n 3276332 
994 |a 92  |b IZTAP