A mathematical introduction to string theory : variational problems, geometric and probabilistic methods /
Classical string theory is concerned with the propagation of classical 1-dimensional curves 'strings', and the theory has connections to the calculus of variations, minimal surfaces and harmonic maps. The quantization of string theory gives rise to problems in different areas, according to...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
©1997.
|
Colección: | London Mathematical Society lecture note series ;
225. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- I.0. Introduction
- I.1. The two-dimensional Plateau problem
- I.2. Topological and metric structures on the space of mappings and metrics
- Appendix to I.2. ILH-structures
- I.3. Harmonic maps and global structures
- I.4. Cauchy-Riemann operators
- I.5. Zeta-function and heat-kernel determinants of an operator
- I.6. The Faddeev-Popov procedure. I.6.1. The Faddeev-Popov map. I.6.2. The Faddeev-Popov determinant: the case G=H. I.6.3. The Faddeev-Popov determinant: the general case
- I.7. Determinant bundles
- I.8. Chern classes of determinant bundles
- I.9. Gaussian measures and random fields
- I.10. Functional quantization of the Hoegh-Krohn and Liouville models on a compact surface
- I.11. Small time asymptotics for heat-kernel regularized determinants
- II. 1. Quantization by functional integrals
- II. 2. The Polyakov measure
- II. 3. Formal Lebesgue measures on Hilbert spaces
- II. 4. The Gaussian integration on the space of embeddings.