|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn836871198 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130408s1992 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d UAB
|d OCLCQ
|d VTS
|d REC
|d STF
|d M8D
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 708568508
|
020 |
|
|
|a 9781107361904
|q (electronic bk.)
|
020 |
|
|
|a 1107361907
|q (electronic bk.)
|
020 |
|
|
|z 0521438012
|
020 |
|
|
|z 9780521438018
|
029 |
1 |
|
|a DEBBG
|b BV043071157
|
029 |
1 |
|
|a DEBSZ
|b 421266317
|
029 |
1 |
|
|a GBVCP
|b 804535779
|
035 |
|
|
|a (OCoLC)836871198
|z (OCoLC)708568508
|
050 |
|
4 |
|a QA612.33
|b .R46 1992eb
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.23
|2 22
|
084 |
|
|
|a 31.61
|2 bcl
|
084 |
|
|
|a PA 54
|2 blsrissc
|
084 |
|
|
|a PC 87
|2 blsrissc
|
084 |
|
|
|a *57-02
|2 msc
|
084 |
|
|
|a 19-02
|2 msc
|
084 |
|
|
|a 19Jxx
|2 msc
|
084 |
|
|
|a 57R67
|2 msc
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ranicki, Andrew,
|d 1948-
|
245 |
1 |
0 |
|a Lower K- and L-theory /
|c Andrew Ranicki.
|
260 |
|
|
|a Cambridge [England] ;
|a New York, NY, USA :
|b Cambridge University Press,
|c 1992.
|
300 |
|
|
|a 1 online resource (174 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 178
|
504 |
|
|
|a Includes bibliographical references (pages 167-171) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra.
|
505 |
0 |
|
|a Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory
|
505 |
8 |
|
|a 19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a K-theory.
|
650 |
|
6 |
|a K-théorie.
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a K-theory
|2 fast
|
650 |
|
7 |
|a K-Théorie.
|2 ram
|
740 |
0 |
|
|a L-theory.
|
776 |
0 |
8 |
|i Print version:
|a Ranicki, Andrew, 1948-
|t Lower K- and L-theory.
|d Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992
|z 0521438012
|w (DLC) 92193401
|w (OCoLC)26505138
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 178.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552493
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10447378
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552493
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10405619
|
994 |
|
|
|a 92
|b IZTAP
|