Cargando…

Lower K- and L-theory /

This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ranicki, Andrew, 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992.
Colección:London Mathematical Society lecture note series ; 178.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836871198
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1992 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 708568508 
020 |a 9781107361904  |q (electronic bk.) 
020 |a 1107361907  |q (electronic bk.) 
020 |z 0521438012 
020 |z 9780521438018 
029 1 |a DEBBG  |b BV043071157 
029 1 |a DEBSZ  |b 421266317 
029 1 |a GBVCP  |b 804535779 
035 |a (OCoLC)836871198  |z (OCoLC)708568508 
050 4 |a QA612.33  |b .R46 1992eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.23  |2 22 
084 |a 31.61  |2 bcl 
084 |a PA 54  |2 blsrissc 
084 |a PC 87  |2 blsrissc 
084 |a *57-02  |2 msc 
084 |a 19-02  |2 msc 
084 |a 19Jxx  |2 msc 
084 |a 57R67  |2 msc 
049 |a UAMI 
100 1 |a Ranicki, Andrew,  |d 1948- 
245 1 0 |a Lower K- and L-theory /  |c Andrew Ranicki. 
260 |a Cambridge [England] ;  |a New York, NY, USA :  |b Cambridge University Press,  |c 1992. 
300 |a 1 online resource (174 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 178 
504 |a Includes bibliographical references (pages 167-171) and index. 
588 0 |a Print version record. 
520 |a This is the first unified treatment in book form of the lower K-groups of Bass and the lower L-groups of the author. These groups arise as the Grothendieck groups of modules and quadratic forms which are components of the K- and L-groups of polynomial extensions. They are important in the topology of non-compact manifolds such as Euclidean spaces, being the value groups for Whitehead torsion, the Siebemann end obstruction and the Wall finiteness and surgery obstructions. Some of the applications to topology are included, such as the obstruction theories for splitting homotopy equivalences and for fibering compact manifolds over the circle. Only elementary algebraic constructions are used, which are always motivated by topology. The material is accessible to a wide mathematical audience, especially graduate students and research workers in topology and algebra. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Introduction; 1. Projective class and torsion; 2. Graded and bounded categories; 3. End invariants; 4. Excision and transversality in K-theory; 5. Isomorphism torsion; 6. Open cones; 7. K-theoryof C1(A); 8. The Laurent polynomial extension category A[z, z-1]; 9. Nilpotent class; 10. K-theory of A[z, z-1]; 11. Lower K-theory; 12. Transfer in K-theory; 13. Quadratic L-theory; 14. Excision and transversality in L-theory; 15. L-theory of C1(A); 16. L-theory of A[z, z-1]; 17. Lower L-theory; 18. Transfer in L-theory 
505 8 |a 19. Symmetric L-theory20. The algebraic fibering obstruction; References; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a K-theory. 
650 6 |a K-théorie. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a K-theory  |2 fast 
650 7 |a K-Théorie.  |2 ram 
740 0 |a L-theory. 
776 0 8 |i Print version:  |a Ranicki, Andrew, 1948-  |t Lower K- and L-theory.  |d Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1992  |z 0521438012  |w (DLC) 92193401  |w (OCoLC)26505138 
830 0 |a London Mathematical Society lecture note series ;  |v 178. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552493  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10447378 
938 |a EBSCOhost  |b EBSC  |n 552493 
938 |a YBP Library Services  |b YANK  |n 10405619 
994 |a 92  |b IZTAP