|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn836870790 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130408s1998 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d UIU
|d E7B
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d REC
|d STF
|d AU@
|d M8D
|d OCLCQ
|d AJS
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 779409454
|
020 |
|
|
|a 9781107362697
|q (electronic bk.)
|
020 |
|
|
|a 1107362695
|q (electronic bk.)
|
020 |
|
|
|a 9780511565847
|q (electronic bk.)
|
020 |
|
|
|a 0511565844
|q (electronic bk.)
|
020 |
|
|
|z 0521632986
|
020 |
|
|
|z 9780521632980
|
029 |
1 |
|
|a DEBSZ
|b 42126702X
|
029 |
1 |
|
|a GBVCP
|b 804535620
|
035 |
|
|
|a (OCoLC)836870790
|z (OCoLC)779409454
|
050 |
|
4 |
|a QA251.3
|b .G76 1998eb
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.24
|2 22
|
084 |
|
|
|a 31.23
|2 bcl
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Gröbner bases and applications /
|c edited by B. Buchberger & F. Winkler.
|
260 |
|
|
|a Cambridge, U.K. ;
|a New York :
|b Cambridge University Press,
|c 1998.
|
300 |
|
|
|a 1 online resource (viii, 552 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 251
|
500 |
|
|
|a Papers from an intensive course for researchers (Jan. 1998) and a conference "33 Years of Gröbner Bases" held at RISC-Linz, Feb. 2-4, 1998.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
8 |
|
|a This book provides an easy-to-read account of the theory of Gröbner bases and applications. It is in 2 parts, the first consists of tutorial lectures, and the second, 17 original research papers on Gröbner bases.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Preface; Programme Committee; Tutorials; Introduction to Grobner Bases; Outline; 1 Grobner Bases at Work; 1.1 Example: Fermat Ideals; 1.2 Example: Geometry Theorem Proving; 1.3 Example: Invariant Theory; 1.4 Example: Systems of Polynomial Equations; 2 The Main Theorem on Grobner Bases; 2.1 Polynomials; 2.2 Polynomial Ideals; 2.3 Admissible Orderings on Power Products; 2.4 Order Dependent Decomposition of Polynomials; 2.5 Admissible Orderings on Polynomials; 2.6 Reduction Modulo Polynomials; Definition (Reduction Modulo Polynomials)
|
505 |
8 |
|
|a Proposition (Noetherianity of Reduction Modulo Polynomials)Proposition (Property of Reduction Algorithm):; Proposition (Property of Cofactor Algorithm); Proposition (Compatibility of Reduction); Proposition (Relation Between Reduction and Congruence); 2.7 Some General Properties of Noetherian ReductionRelations; 2.8 Grobner Bases; 2.9 S-Polynomials; 2.10 The Main Theorem: Algorithmic Characterizationof Grobner Bases by S-Polynomials; 2.11 An Algorithm for Constructing Grobner Bases; Proposition (Correctness of the Grobner-Basis Algorithm):; Definition (Reduced Grobner Bases)
|
505 |
8 |
|
|a Proposition (Canonicality):2.12 Other Characterizations of Grobner Bases; 3 Applications of Grobner Bases; 3.1 Overview; 3.2 Ideal Membership, Canonical Simplification, IdealIdentity; 3.3 Radical Membership; 3.4 Computation in Residue Class Rings Modulo Ideals; 3.5 Leading Power Products; 3.6 Polynomial Equations; 3.7 Linear Syzygies; 3.8 Hilbert Functions; 3.9 Elimination Ideals; 3.10 Ideal Operations; 3.11 Algebraic Relations and Implicitization; 3.12 Inverse Mappings; 3.13 Miscellaneous; References; Symbolic Summation and Symbolic Integration; Introduction
|
505 |
8 |
|
|a 1 Indefinite Summation and Integration1.1 Ore Operators, Ore Algebras, Annihilating Ideals; 1.2 Grobner Bases in Ore Algebras; Contiguity Relations for the Appell F4 Bivariate HypergeometricFunction; 1.3 5-Finite Functions; 1.4 Indefinite Summation and Integration; Particular Solutions; Multivariate Extension; 2 Definite Summation and Integration; 2.1 Creative Telescoping and Elimination by GrobnerBases; 2.2 Multiple Summations and Integrations; 2.3 Takayama's Algorithm and Grobner Bases of Modules; Gordon's Generalization of the Rogers-Ramanujan Identities
|
505 |
8 |
|
|a 2.4 Zeilberger's Fast Algorithm and its <9-Finite ExtensionCalkin's Curious Identity; 3 Closure Properties; 3.1 Addition, Product and Derivation of 5-Finite Functionsby the FGLM Algorithm; 3.2 Indefinite Summation and Integration by GrobnerBases; 4 Dimension and Holonomy; Acknowledgements; References; Grobner Bases and Invariant Theory; 0 Introduction; 1 Basic definitions and problems; 2 Algorithms for finite groups; 3 Algorithms for linearly reductive groups; References; A Tutorial on Generic Initial Ideals; Why is the gin Borel-fixed?; Why does the rlex gin compute satiety and regularity?
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Gröbner bases.
|
650 |
|
6 |
|a Bases de Gröbner.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a Gröbner bases.
|2 fast
|0 (OCoLC)fst00948675
|
650 |
1 |
7 |
|a Commutatieve algebra's.
|2 gtt
|
650 |
|
7 |
|a Gröbner, Bases de.
|2 ram
|
700 |
1 |
|
|a Buchberger, Bruno.
|
700 |
1 |
|
|a Winkler, Franz,
|d 1955-
|
776 |
0 |
8 |
|i Print version:
|t Gröbner bases and applications.
|d Cambridge, U.K. ; New York : Cambridge University Press, 1998
|z 0521632986
|w (DLC) 97044181
|w (OCoLC)38042878
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 251.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552422
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10560876
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552422
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6967369
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10370358
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10405687
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10666583
|
994 |
|
|
|a 92
|b IZTAP
|