Invariant potential theory in the unit ball of Cn̳ /
This monograph provides an introduction and a survey of recent results in potential theory with respect to the Laplace-Beltrami operator D in several complex variables, with special emphasis on the unit ball in Cn. Topics covered include Poisson-Szegö integrals on the ball, the Green's functio...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
1994.
|
Colección: | London Mathematical Society lecture note series ;
199. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half-title; Title; Copyright; Dedication; Contents; Introduction; 1. Notation and Preliminary Results; 1.1 Notation; 1.2 Integral Formulas on B; 1.3 Automorphisms of B; 2. The Bergman Kernel; 2.1 The Bergman Kernel; 2.2 Examples; 2.3 Properties of the Bergman Kernel; 2.4 The Bergman Metric; 3. The Laplace-Beltrami Operator; 3.1 The Invariant Laplacian; 3.2 The Invariant Laplacian for Un; 3.3 The Invariant Laplacian for B; 3.4 The Invariant Gradient; 4. Invariant Harmonic and Subharmonic Functions; 4.1 M.-Subharmonic Functions; 4.2 The Invariant Convolution on B; 4.3 The Riesz Measure
- 10.3 M-Harmonic Bergman and Dirichlet Spaces10.4 Remarks; References; Index