Global attractors in abstract parabolic problems /
This book investigates the asymptotic behaviour of dynamical systems corresponding to parabolic equations.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press,
2000.
|
Colección: | London Mathematical Society lecture note series ;
278. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Ch. 1. Preliminary Concepts
- 1.1. Elements of stability theory
- 1.2. Inequalities. Elliptic operators
- 1.3. Sectorial operators
- Ch. 2. The abstract Cauchy problem
- 2.1. Evolutionary equation with sectorial operator
- 2.2. Variation of constants formula
- 2.3. Local X[superscript [alpha]] solutions
- Ch. 3. Semigroups of global solutions
- 3.1. Generation of nonlinear semigroups
- 3.2. Smoothing properties of the semigroup
- 3.3. Compactness results
- Ch. 4. Construction of the global attractor
- 4.1. Dissipativeness of {T(t)}
- 4.2. Existence of a global attractor
- abstract setting
- 4.3. Global solvability and attractors in X[superscript [alpha]] scales
- Ch. 5. Application of abstract results to parabolic equations
- 5.1. Formulation of the problem
- 5.2. Global solutions via partial information
- 5.3. Existence of a global attractor
- Ch. 6. Examples of global attractors in parabolic problems
- 6.1. Introductory example
- 6.2. Single second order dissipative equation
- 6.3. The method of invariant regions
- 6.4. The Cahn-Hilliard pattern formation model
- 6.5. Burgers equation
- 6.6. Navier-Stokes equations in low dimension (n [less than or equal to] 2)
- 6.7. Cauchy problems in the half-space R[superscript +] x R[superscript n]
- Ch. 7. Backward uniqueness and regularity of solutions
- 7.1. Invertible processes
- 7.2. X[superscript s+[alpha]] solutions; s [greater than or equal to] 0, [alpha][Epsilon](0,1)
- Ch. 8. Extensions
- 8.1. Non-Lipschitz nonlinearities
- 8.2. Application of the principle of linearized stability
- 8.3. The n-dimensional Navier-Stokes system
- 8.4. Parabolic problems in Holder spaces
- 8.5. Dissipativeness in Holder spaces
- 8.6. Equations with monotone operators
- Ch. 9. Appendix
- 9.1. Notation, definitions and conventions
- 9.2. Abstract version of the maximum principle
- 9.3. L[superscript [infinity]]([Omega]) estimate for second order problems
- 9.4. Comparison of X[superscript [alpha]] solution with other types of solutions
- 9.5. Final remarks.