Cargando…

Global attractors in abstract parabolic problems /

This book investigates the asymptotic behaviour of dynamical systems corresponding to parabolic equations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cholewa, Jan W.
Autor Corporativo: London Mathematical Society
Otros Autores: Dlotko, Tomasz
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2000.
Colección:London Mathematical Society lecture note series ; 278.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836869289
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s2000 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d AUD  |d IDEBK  |d MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d COO  |d VTS  |d REC  |d STF  |d AU@  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 708568571  |a 776966327 
020 |a 9781107363120  |q (electronic bk.) 
020 |a 1107363128  |q (electronic bk.) 
020 |a 9780511526404  |q (ebook) 
020 |a 0511526407  |q (ebook) 
020 |a 9781107368033 
020 |a 1107368030 
020 |z 0521794242 
020 |z 9780521794244 
029 1 |a DEBBG  |b BV043100968 
029 1 |a DEBSZ  |b 382135636 
029 1 |a DEBSZ  |b 421266090 
029 1 |a GBVCP  |b 804534756 
029 1 |a DKDLA  |b 820120-katalog:9910051033805765 
035 |a (OCoLC)836869289  |z (OCoLC)708568571  |z (OCoLC)776966327 
050 4 |a QA614.813  |b .C48 2000eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.74  |2 22 
084 |a 31.40  |2 bcl 
049 |a UAMI 
100 1 |a Cholewa, Jan W. 
245 1 0 |a Global attractors in abstract parabolic problems /  |c Jan W. Cholewa & Tomasz Dlotko ; in cooperation with Nathaniel Chafee. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2000. 
300 |a 1 online resource (xii, 235 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 278 
504 |a Includes bibliographical references (pages 225-233) and index. 
588 0 |a Print version record. 
520 |a This book investigates the asymptotic behaviour of dynamical systems corresponding to parabolic equations. 
505 0 |a Ch. 1. Preliminary Concepts -- 1.1. Elements of stability theory -- 1.2. Inequalities. Elliptic operators -- 1.3. Sectorial operators -- Ch. 2. The abstract Cauchy problem -- 2.1. Evolutionary equation with sectorial operator -- 2.2. Variation of constants formula -- 2.3. Local X[superscript [alpha]] solutions -- Ch. 3. Semigroups of global solutions -- 3.1. Generation of nonlinear semigroups -- 3.2. Smoothing properties of the semigroup -- 3.3. Compactness results -- Ch. 4. Construction of the global attractor -- 4.1. Dissipativeness of {T(t)} -- 4.2. Existence of a global attractor -- abstract setting -- 4.3. Global solvability and attractors in X[superscript [alpha]] scales -- Ch. 5. Application of abstract results to parabolic equations -- 5.1. Formulation of the problem -- 5.2. Global solutions via partial information -- 5.3. Existence of a global attractor -- Ch. 6. Examples of global attractors in parabolic problems -- 6.1. Introductory example -- 6.2. Single second order dissipative equation -- 6.3. The method of invariant regions -- 6.4. The Cahn-Hilliard pattern formation model -- 6.5. Burgers equation -- 6.6. Navier-Stokes equations in low dimension (n [less than or equal to] 2) -- 6.7. Cauchy problems in the half-space R[superscript +] x R[superscript n] -- Ch. 7. Backward uniqueness and regularity of solutions -- 7.1. Invertible processes -- 7.2. X[superscript s+[alpha]] solutions; s [greater than or equal to] 0, [alpha][Epsilon](0,1) -- Ch. 8. Extensions -- 8.1. Non-Lipschitz nonlinearities -- 8.2. Application of the principle of linearized stability -- 8.3. The n-dimensional Navier-Stokes system -- 8.4. Parabolic problems in Holder spaces -- 8.5. Dissipativeness in Holder spaces -- 8.6. Equations with monotone operators -- Ch. 9. Appendix -- 9.1. Notation, definitions and conventions -- 9.2. Abstract version of the maximum principle -- 9.3. L[superscript [infinity]]([Omega]) estimate for second order problems -- 9.4. Comparison of X[superscript [alpha]] solution with other types of solutions -- 9.5. Final remarks. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Attractors (Mathematics) 
650 0 |a Differential equations, Parabolic. 
650 6 |a Attracteurs (Mathématiques) 
650 6 |a Équations différentielles paraboliques. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Attractors (Mathematics)  |2 fast  |0 (OCoLC)fst00820911 
650 7 |a Differential equations, Parabolic.  |2 fast  |0 (OCoLC)fst00893480 
650 1 7 |a Parabolische differentiaalvergelijkingen.  |2 gtt 
650 1 7 |a Dynamische systemen.  |2 gtt 
650 7 |a Attracteurs (Mathématiques)  |2 ram 
650 7 |a Equations différentielles paraboliques.  |2 ram 
700 1 |a Dlotko, Tomasz. 
710 2 |a London Mathematical Society. 
776 0 8 |i Print version:  |a Cholewa, Jan W.  |t Global attractors in abstract parabolic problems.  |d Cambridge, UK ; New York : Cambridge University Press, 2000  |z 0521794242  |w (DLC) 00710511  |w (OCoLC)44014677 
830 0 |a London Mathematical Society lecture note series ;  |v 278. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552516  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13421993 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385409 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1182582 
938 |a ebrary  |b EBRY  |n ebr10447411 
938 |a EBSCOhost  |b EBSC  |n 552516 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154652 
938 |a YBP Library Services  |b YANK  |n 10407430 
938 |a YBP Library Services  |b YANK  |n 3275140 
938 |a YBP Library Services  |b YANK  |n 10370375 
938 |a YBP Library Services  |b YANK  |n 10689802 
994 |a 92  |b IZTAP