|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn836864223 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130408s1981 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCO
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d OCLCO
|d UAB
|d OCLCQ
|d VTS
|d OCLCA
|d REC
|d OCLCO
|d STF
|d M8D
|d OCLCO
|d UKAHL
|d VLY
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 797839729
|a 907081796
|a 1162403893
|a 1241806909
|a 1242481268
|
020 |
|
|
|a 9781107360976
|q (electronic bk.)
|
020 |
|
|
|a 1107360978
|q (electronic bk.)
|
020 |
|
|
|a 1139883844
|
020 |
|
|
|a 9781139883849
|
020 |
|
|
|a 1107365880
|
020 |
|
|
|a 9781107365889
|
020 |
|
|
|a 1107370612
|
020 |
|
|
|a 9781107370616
|
020 |
|
|
|a 1107370272
|
020 |
|
|
|a 9781107370272
|
020 |
|
|
|a 1299403697
|
020 |
|
|
|a 9781299403697
|
020 |
|
|
|a 0511721242
|
020 |
|
|
|a 9780511721243
|
020 |
|
|
|z 0521241901
|
020 |
|
|
|z 9780521241908
|
020 |
|
|
|z 9780511721243
|
029 |
1 |
|
|a DEBBG
|b BV043112282
|
029 |
1 |
|
|a DEBSZ
|b 421266961
|
029 |
1 |
|
|a GBVCP
|b 804533490
|
035 |
|
|
|a (OCoLC)836864223
|z (OCoLC)797839729
|z (OCoLC)907081796
|z (OCoLC)1162403893
|z (OCoLC)1241806909
|z (OCoLC)1242481268
|
050 |
|
4 |
|a QA171
|b .G53 1981eb
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.2
|2 22
|
084 |
|
|
|a 31.21
|2 bcl
|
084 |
|
|
|a SI 320
|2 rvk
|
084 |
|
|
|a SK 260
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Glass, A. M. W.
|q (Andrew Martin William),
|d 1944-
|
245 |
1 |
0 |
|a Ordered permutation groups /
|c A.M.W. Glass.
|
260 |
|
|
|a Cambridge [Cambridgeshire] ;
|a New York :
|b Cambridge University Press,
|c 1981.
|
300 |
|
|
|a 1 online resource (xlix, 266 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 55
|
504 |
|
|
|a Includes bibliographical references (pages 253-266).
|
500 |
|
|
|a Includes indexes.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals.
|
505 |
8 |
|
|a CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Permutation groups.
|
650 |
|
0 |
|a Ordered groups.
|
650 |
|
6 |
|a Groupes de permutations.
|
650 |
|
6 |
|a Groupes ordonnés.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a Ordered groups
|2 fast
|
650 |
|
7 |
|a Permutation groups
|2 fast
|
650 |
|
7 |
|a Permutationsgruppe
|2 gnd
|
650 |
1 |
7 |
|a Permutatiegroepen.
|2 gtt
|
776 |
0 |
8 |
|i Print version:
|a Glass, A.M.W. (Andrew Martin William), 1944-
|t Ordered permutation groups.
|d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981
|z 0521241901
|w (DLC) 81016996
|w (OCoLC)7835222
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 55.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552428
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13430692
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26385244
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10562280
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552428
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154698
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10666551
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3583246
|
994 |
|
|
|a 92
|b IZTAP
|