Cargando…

Ordered permutation groups /

As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Glass, A. M. W. (Andrew Martin William), 1944-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981.
Colección:London Mathematical Society lecture note series ; 55.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836864223
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1981 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCO  |d IDEBK  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d OCLCA  |d REC  |d OCLCO  |d STF  |d M8D  |d OCLCO  |d UKAHL  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 797839729  |a 907081796  |a 1162403893  |a 1241806909  |a 1242481268 
020 |a 9781107360976  |q (electronic bk.) 
020 |a 1107360978  |q (electronic bk.) 
020 |a 1139883844 
020 |a 9781139883849 
020 |a 1107365880 
020 |a 9781107365889 
020 |a 1107370612 
020 |a 9781107370616 
020 |a 1107370272 
020 |a 9781107370272 
020 |a 1299403697 
020 |a 9781299403697 
020 |a 0511721242 
020 |a 9780511721243 
020 |z 0521241901 
020 |z 9780521241908 
020 |z 9780511721243 
029 1 |a DEBBG  |b BV043112282 
029 1 |a DEBSZ  |b 421266961 
029 1 |a GBVCP  |b 804533490 
035 |a (OCoLC)836864223  |z (OCoLC)797839729  |z (OCoLC)907081796  |z (OCoLC)1162403893  |z (OCoLC)1241806909  |z (OCoLC)1242481268 
050 4 |a QA171  |b .G53 1981eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
084 |a SI 320  |2 rvk 
084 |a SK 260  |2 rvk 
049 |a UAMI 
100 1 |a Glass, A. M. W.  |q (Andrew Martin William),  |d 1944- 
245 1 0 |a Ordered permutation groups /  |c A.M.W. Glass. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1981. 
300 |a 1 online resource (xlix, 266 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 55 
504 |a Includes bibliographical references (pages 253-266). 
500 |a Includes indexes. 
588 0 |a Print version record. 
520 |a As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals. 
505 8 |a CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Permutation groups. 
650 0 |a Ordered groups. 
650 6 |a Groupes de permutations. 
650 6 |a Groupes ordonnés. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Ordered groups  |2 fast 
650 7 |a Permutation groups  |2 fast 
650 7 |a Permutationsgruppe  |2 gnd 
650 1 7 |a Permutatiegroepen.  |2 gtt 
776 0 8 |i Print version:  |a Glass, A.M.W. (Andrew Martin William), 1944-  |t Ordered permutation groups.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981  |z 0521241901  |w (DLC) 81016996  |w (OCoLC)7835222 
830 0 |a London Mathematical Society lecture note series ;  |v 55. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552428  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13430692 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385244 
938 |a ebrary  |b EBRY  |n ebr10562280 
938 |a EBSCOhost  |b EBSC  |n 552428 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154698 
938 |a YBP Library Services  |b YANK  |n 10666551 
938 |a YBP Library Services  |b YANK  |n 3583246 
994 |a 92  |b IZTAP