Cargando…

Two-dimensional homotopy and combinatorial group theory /

Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J.H.C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hog-Angeloni, Cynthia, Metzler, W. (Wolfgang), Sieradski, Allan J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York, NY : Cambridge University Press, 1993.
Colección:London Mathematical Society lecture note series ; 197.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836848805
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1993 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d COO  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 708565235 
020 |a 9781107361935  |q (electronic bk.) 
020 |a 1107361931  |q (electronic bk.) 
020 |a 9780511629358  |q (e-book) 
020 |a 0511629354  |q (e-book) 
020 |z 0521447003 
020 |z 9780521447003 
029 1 |a DEBBG  |b BV043118200 
029 1 |a DEBSZ  |b 421266279 
029 1 |a GBVCP  |b 804531129 
035 |a (OCoLC)836848805  |z (OCoLC)708565235 
050 4 |a QA612.7  |b .T96 1993eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.24  |2 22 
084 |a 31.21  |2 bcl 
084 |a PC 81  |2 blsrissc 
049 |a UAMI 
245 0 0 |a Two-dimensional homotopy and combinatorial group theory /  |c edited by Cynthia Hog-Angeloni, Wolfgang Metzler and Allan J. Sieradski. 
260 |a Cambridge ;  |a New York, NY :  |b Cambridge University Press,  |c 1993. 
300 |a 1 online resource (xi, 412 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 197 
504 |a Includes bibliographical references (pages 381-407) and index. 
588 0 |a Print version record. 
520 |a Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J.H.C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers. 
505 0 |a Cover; Title; Copyright; Contents; Editors' Preface; Addresses of Authors; I Geometric Aspects of Two-Dimensional Complexes; 1 Complexes of Low Dimensions and Group Presentations . . .; 1.1 Inductive construction of CW-complexes; 1.2 Questions of subdivision and triangulation; 1.3 Reading off presentations for TTI of a CW-complex; 1.4 PLCW-complexes; 2 Simple-Homotopy and Low Dimensions; 2.1 A survey on geometric simple-homotopy; 2.2 Some examples; 2.3 3-deformation types and (Q**-transformations; 3 P.L. Embeddings of 2-Complexes into Manifolds; 3.1 3-dimensional thickenings 
505 8 |a 3.2 4- and 5-dimensional thickenings4 Three Conjectures and Further Problems; 4.1 (Generalized) Andrews-Curtis conjecture; 4.2 Zeeman collapsing conjecture; 4.3 Whitehead asphericity conjecture as a special problem of dimension 2; 4.4 Further open questions; II Algebraic Topology for Two Dimensional Complexes; 1 Techniques in Homotopy; 1.1 Simplicial Techniques; 1.2 Combinatorial Maps; 2 Homotopy Groups for 2-Complexes 62; 2.1 Fundamental sequence for a 2-complex K; 2.2 II(K) and the homotopy type of a 2-complex K; 3 Equivariant World for 2-Complexes; 3.1 Hurewicz Isomorphism Theorems 
505 8 |a 3.2 Two Dimensional Equivariant World4 Mac Lane-Whitehead Algebraic Types; 4.1 Homology and Cohomology of Groups; 4.2 Maps between 2-complexes; III Homotopy and Homology Classification of 2-Complexes; 1 Bias Invariant & Homology Classification; 1.1 Bias as a homotopy obstruction; 1.2 Bias as the complete homology obstruction; 1.3 Homotopy distinction of twisted presentations; 2 Classifications for Finite Abelian TTI Ill; 2.1 The Browning obstruction group; 2.2 Homotopy classification for finite abelian TTI; 3 Classifications for Non-Finite TTI (with Cynthia Hog-Angeloni); 3.1 Infinite groups 
505 8 |a Generalized Browning invariant3.2 Results when TTI is a free product of cyclic groups; 3.3 Trees of homotopy types, simple-homotopy types, and 3_deformation types; 3.4 Problems for Chapter III; IV Crossed Modules and n2 Homotopy Modules; 1 Introduction; 2 Crossed and Precrossed Modules; 2.1 Free crossed modules; 2.2 A characterization of free crossed modules; 2.3 Projective crossed modules; 2.4 Two-complexes and projective crossed modules; 2.5 The kernel of a projective crossed module; 3 On the Second Homotopy Module of a 2-Complex; 3.1 Coproducts of crossed modules; 3.2 A special case 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Homotopy theory. 
650 0 |a Combinatorial group theory. 
650 0 |a Low-dimensional topology. 
650 6 |a Homotopie. 
650 6 |a Théorie combinatoire des groupes. 
650 6 |a Topologie de basse dimension. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Combinatorial group theory  |2 fast 
650 7 |a Homotopy theory  |2 fast 
650 7 |a Low-dimensional topology  |2 fast 
650 7 |a Kombinatorische Gruppentheorie  |2 gnd 
650 7 |a Homotopiemannigfaltigkeit  |2 gnd 
650 1 7 |a Homotopie.  |2 gtt 
650 7 |a Homotopie.  |2 ram 
650 7 |a Groupes combinatoires, théorie des.  |2 ram 
650 7 |a Topologie de basse dimension.  |2 ram 
653 0 |a Algebraic topology 
700 1 |a Hog-Angeloni, Cynthia. 
700 1 |a Metzler, W.  |q (Wolfgang) 
700 1 |a Sieradski, Allan J. 
776 0 8 |i Print version:  |t Two-dimensional homotopy and combinatorial group theory.  |d Cambridge ; New York, NY : Cambridge University Press, 1993  |z 0521447003  |w (DLC) 94176225  |w (OCoLC)29633587 
830 0 |a London Mathematical Society lecture note series ;  |v 197. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552497  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10443952 
938 |a EBSCOhost  |b EBSC  |n 552497 
938 |a YBP Library Services  |b YANK  |n 10405622 
994 |a 92  |b IZTAP