|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn836848801 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130408s1977 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d IDEBK
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d UAB
|d OCLCQ
|d VTS
|d REC
|d STF
|d M8D
|d SFB
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 704520597
|
020 |
|
|
|a 9781107360860
|q (electronic bk.)
|
020 |
|
|
|a 1107360862
|q (electronic bk.)
|
020 |
|
|
|a 9780511600715
|q (e-book)
|
020 |
|
|
|a 0511600712
|q (e-book)
|
020 |
|
|
|z 0521213401
|
020 |
|
|
|z 9780521213400
|
029 |
1 |
|
|a DEBBG
|b BV043118205
|
029 |
1 |
|
|a DEBSZ
|b 421267003
|
029 |
1 |
|
|a GBVCP
|b 804531080
|
035 |
|
|
|a (OCoLC)836848801
|z (OCoLC)704520597
|
050 |
|
4 |
|a QA387
|b .P74 1977eb
|
072 |
|
7 |
|a MAT
|x 002050
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.55
|2 22
|
084 |
|
|
|a 31.30
|2 bcl
|
088 |
|
|
|a 76014034
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Price, John F.
|q (John Frederick),
|d 1943-
|
245 |
1 |
0 |
|a Lie groups and compact groups /
|c John F. Price.
|
260 |
|
|
|a Cambridge [England] ;
|a New York :
|b Cambridge University Press,
|c 1977.
|
300 |
|
|
|a 1 online resource (ix, 177 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 25
|
504 |
|
|
|a Includes bibliographical references (pages 169-173) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The theory of Lie groups is a very active part of mathematics and it is the twofold aim of these notes to provide a self-contained introduction to the subject and to make results about the structure of Lie groups and compact groups available to a wide audience. Particular emphasis is placed upon results and techniques which explicate the interplay between a Lie group and its Lie algebra, and, in keeping with current trends, a coordinate-free notation is used. Much of the general theory is illustrated by examples and exercises involving specific Lie groups.
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Preface; Chapter 1 Analytic manifolds; 1. 1 Manifolds and differentiability; 1. 2 The tangent bundle; 1. 3 Vector fields; Notes; Exercises; Chapter 2 Lie groups and Lie algebras; 2. 1 Lie groups; 2. 2 The Lie algebra of a Lie group; 2. 3 Homomorphisms of Lie groups; 2. 4 The general linear group; Notes; Exercises; Chapter 3 The Campbell-Baker-Hausdorff formula; 3.1 The CBH formula for Lie algebras; 3. 2 The CBH formula for Lie groups; 3. 3 Closed subgroups; 3. 4 Simply connected Lie groups; Notes; Exercises; Chapter 4 The geometry of Lie groups
|
505 |
8 |
|
|a 4.1 Riemannian manifolds4. 2 Invariant metrics on Lie groups; 4. 3 Geodesies on Lie groups; Notes; Exercises; Chapter 5 Lie subgroups and subalgebras; 5.1 Subgroups and subalgebras; 5. 2 Normal subgroups and ideals; Notes; Exercises; Chapter 6 Characterisations and structure of compact Lie Groups; 6.1 Compact groups and Lie groups; 6. 2 Linear Lie groups; 6. 3 Simple and semisimple Lie algebras; 6. 4 The structure of compact Lie groups; 6. 5 Compact connected groups; Notes; Exercises; Appendix A Abstract harmonic analysis; A. 1 Topological groups; A. 2 Representations; A. 3 Compact groups
|
505 |
8 |
|
|a A. 4 The Haar integralBibliography; Index
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Lie groups.
|
650 |
|
0 |
|a Compact groups.
|
650 |
|
6 |
|a Groupes de Lie.
|
650 |
|
6 |
|a Groupes compacts.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Linear.
|2 bisacsh
|
650 |
|
7 |
|a Compact groups
|2 fast
|
650 |
|
7 |
|a Lie groups
|2 fast
|
650 |
1 |
7 |
|a Lie-groepen.
|2 gtt
|
650 |
1 |
7 |
|a Topologische groepen.
|2 gtt
|
650 |
|
7 |
|a Lie, Groupes de.
|2 ram
|
650 |
|
7 |
|a Groupes compacts.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Price, John F. (John Frederick), 1943-
|t Lie groups and compact groups.
|d Cambridge [Eng.] ; New York : Cambridge University Press, 1977
|z 0521213401
|w (DLC) 76014034
|w (OCoLC)2597532
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 25.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552424
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n liegroupscompact0000pric
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10440987
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552424
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154457
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10407341
|
994 |
|
|
|a 92
|b IZTAP
|