Cargando…

Elliptic curves and big Galois representations /

"The mysterious properties of modular forms lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Delbourgo, Daniel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2008.
Colección:London Mathematical Society lecture note series ; 356.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836848758
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s2008 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d YDXCP  |d AUD  |d UUS  |d MERUC  |d MHW  |d DEBSZ  |d OCLCQ  |d AU@  |d UKAHL  |d OL$  |d OCLCO  |d OCLCQ  |d S8J  |d OCLCO  |d LUN  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 704518046  |a 776967037  |a 843203457  |a 1167332240 
020 |a 9781107363069  |q (electronic bk.) 
020 |a 1107363063  |q (electronic bk.) 
020 |a 9780511894046  |q (e-book) 
020 |a 051189404X  |q (e-book) 
020 |a 9780511721281  |q (ebook) 
020 |a 0511721285  |q (ebook) 
020 |a 9781107367975 
020 |a 1107367972 
020 |z 9780521728669 
020 |z 0521728665 
029 1 |a AU@  |b 000055884077 
029 1 |a DEBSZ  |b 382457595 
035 |a (OCoLC)836848758  |z (OCoLC)704518046  |z (OCoLC)776967037  |z (OCoLC)843203457  |z (OCoLC)1167332240 
050 4 |a QA567.2.E44  |b D36 2008eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 516.3/52  |2 22 
084 |a SI 320  |2 rvk 
084 |a SK 200  |2 rvk 
084 |a SK 180  |2 rvk 
084 |a MAT 145f  |2 stub 
084 |a MAT 143f  |2 stub 
049 |a UAMI 
100 1 |a Delbourgo, Daniel. 
245 1 0 |a Elliptic curves and big Galois representations /  |c Daniel Delbourgo. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2008. 
300 |a 1 online resource (ix, 281 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 356 
504 |a Includes bibliographical references (pages 275-279) and index. 
520 1 |a "The mysterious properties of modular forms lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula." "Three main steps are outlined. The first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. One can then establish finiteness results for big Selmer groups. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture." "This is the first book on the subject, and the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction to the subject. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases."--Jacket 
588 0 |a Print version record. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Introduction; List of Notations; Chapter I Background; 1.1 Elliptic curves; 1.2 Hasse-Weil L-functions; 1.3 Structure of the Mordell-Weil group; 1.4 The conjectures of Birch and Swinnerton-Dyer; 1.5 Modular forms and Hecke algebras; Chapter II p-Adic L-functions and Zeta Elements; 2.1 The p-adic Birch and Swinnerton-Dyer conjecture; 2.2 Perrin-Riou's local Iwasawa theory; 2.3 Integrality and (z, D)-modules; 2.4 Norm relations in K-theory; 2.5 Kato's p-adic zeta-elements; Chapter III Cyclotomic Deformations of Modular Symbols; 3.1 Q-continuity. 
505 8 |a 3.2 Cohomological subspaces of Euler systems3.3 The one-variable interpolation; 3.4 Local freeness of the image; Chapter IV A User's Guide to Hida Theory; 4.1 The universal ordinary Galois representation; 4.2 N-adic modular forms; 4.3 Multiplicity one for I-adic modular symbols; 4.4 Two-variable p-adic L-functions; Chapter V Crystalline Weight Deformations; 5.1 Cohomologies over deformation rings; 5.2 p-Ordinary deformations of Bcris and Dcris; 5.3 Constructing big dual exponentials; 5.4 Local dualities; Chapter VI Super Zeta-Elements; 6.1 The R-adic version of Kato's theorem. 
505 8 |a 6.2 A two-variable interpolation6.3 Applications to Iwasawa theory; 6.4 The Coleman exact sequence; 6.5 Computing the R[[D]]-torsion; Chapter VII Vertical and Half-Twisted Arithmetic; 7.1 Big Selmer groups; 7.2 The fundamental commutative diagrams; 7.3 Control theory for Selmer coranks; Chapter VIII Diamond-Euler Characteristics: the Local Case; 8.1 Analytic rank zero; 8.2 The Tamagawa factors away from p; 8.3 The Tamagawa factors above p (the vertical case); 8.4 The Tamagawa factors above p (the half-twisted case); 8.5 Evaluating the covolumes. 
505 8 |a 10.6 Numerical examples, open problemsAppendices; A: The Primitivity of Zeta Elements; B: Specialising the Universal Path Vector; C: The Weight-Variable Control Theorem (by Paul A. Smith); C.1 Notation and assumptions; C.2 Properties of affinoids; C.3 The cohomology of a lattice L; C.4 Local conditions; C.5 Dualities via the Ext-pairings; C.6 Controlling the Selmer groups; Bibliography; Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Curves, Elliptic. 
650 0 |a Galois theory. 
650 6 |a Courbes elliptiques. 
650 6 |a Théorie de Galois. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Curves, Elliptic  |2 fast 
650 7 |a Galois theory  |2 fast 
650 7 |a Elliptische Kurve  |2 gnd 
650 7 |a Galois-Darstellung  |2 gnd 
776 0 8 |i Print version:  |a Delbourgo, Daniel.  |t Elliptic curves and big Galois representations.  |d Cambridge, UK ; New York : Cambridge University Press, 2008  |z 9780521728669  |w (DLC) 2008021192  |w (OCoLC)227275650 
830 0 |a London Mathematical Society lecture note series ;  |v 356. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552371  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13430695 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385142 
938 |a ebrary  |b EBRY  |n ebr10438588 
938 |a EBSCOhost  |b EBSC  |n 552371 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154647 
938 |a YBP Library Services  |b YANK  |n 10405721 
938 |a YBP Library Services  |b YANK  |n 10370366 
938 |a YBP Library Services  |b YANK  |n 3583249 
938 |a YBP Library Services  |b YANK  |n 10689797 
994 |a 92  |b IZTAP