Shintani zeta functions /
The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated obj...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge [England] ; New York :
Cambridge University Press,
1993.
|
Colección: | London Mathematical Society lecture note series ;
183. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program
- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms
- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]
- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem.