Cargando…

Shintani zeta functions /

The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated obj...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yukie, Akihiko
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York : Cambridge University Press, 1993.
Colección:London Mathematical Society lecture note series ; 183.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn836848751
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130408s1993 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d OCLCA  |d REC  |d STF  |d M8D  |d OCLCO  |d UKAHL  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 715186472  |a 1119040545  |a 1162523423  |a 1241893671  |a 1242485108 
020 |a 9781107361959  |q (electronic bk.) 
020 |a 1107361958  |q (electronic bk.) 
020 |a 9780511662331  |q (e-book) 
020 |a 0511662335  |q (e-book) 
020 |a 1139884891 
020 |a 9781139884891 
020 |a 1107366860 
020 |a 9781107366862 
020 |a 1107371538 
020 |a 9781107371538 
020 |a 1107368545 
020 |a 9781107368545 
020 |z 0521448042 
020 |z 9780521448048 
029 1 |a DEBBG  |b BV043118344 
029 1 |a DEBSZ  |b 421266570 
029 1 |a GBVCP  |b 804530610 
035 |a (OCoLC)836848751  |z (OCoLC)715186472  |z (OCoLC)1119040545  |z (OCoLC)1162523423  |z (OCoLC)1241893671  |z (OCoLC)1242485108 
050 4 |a QA351  |b .Y85 1993eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.56  |2 22 
084 |a 31.14  |2 bcl 
084 |a *11E45  |2 msc 
084 |a 11-02  |2 msc 
084 |a 14-02  |2 msc 
084 |a 14G10  |2 msc 
084 |a 14M17  |2 msc 
049 |a UAMI 
100 1 |a Yukie, Akihiko. 
245 1 0 |a Shintani zeta functions /  |c Akihiko Yukie. 
260 |a Cambridge [England] ;  |a New York :  |b Cambridge University Press,  |c 1993. 
300 |a 1 online resource (xii, 339 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 183 
504 |a Includes bibliographical references (pages 331-334) and index. 
505 0 |a pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program -- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms -- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2] -- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem. 
588 0 |a Print version record. 
520 |a The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Functions, Zeta. 
650 6 |a Fonctions zêta. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functions, Zeta  |2 fast 
650 7 |a Shintani-Zetafunktion  |2 gnd 
650 1 7 |a Zeta-functies.  |2 gtt 
650 7 |a Função zeta (teoria dos números)  |2 larpcal 
650 7 |a Teoria analítica dos números.  |2 larpcal 
650 7 |a Fonctions zeta.  |2 ram 
776 0 8 |i Print version:  |a Yukie, Akihiko.  |t Shintani zeta functions.  |d Cambridge [England] ; New York : Cambridge University Press, 1993  |z 0521448042  |w (DLC) 92045913  |w (OCoLC)27266539 
830 0 |a London Mathematical Society lecture note series ;  |v 183. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552466  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13428504 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385339 
938 |a ebrary  |b EBRY  |n ebr10455740 
938 |a EBSCOhost  |b EBSC  |n 552466 
938 |a YBP Library Services  |b YANK  |n 10370347 
938 |a YBP Library Services  |b YANK  |n 3582187 
938 |a YBP Library Services  |b YANK  |n 10405624 
938 |a YBP Library Services  |b YANK  |n 10689707 
994 |a 92  |b IZTAP