Cargando…

Neurocomputing : learning, architectures, and modeling /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Mueller, Elizabeth T. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, Inc., [2012]
Colección:Computing science, technology and applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn836082894
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 110527s2012 nyu ob 001 0 eng
010 |a  2019713580 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d E7B  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d AGLDB  |d VTS  |d AU@  |d STF  |d K6U  |d N$T  |d OCLCO  |d OCLCQ  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781624175985  |q (ebook) 
020 |a 1624175988 
020 |z 9781613246993  |q (hardcover) 
020 |z 1613246994 
029 1 |a CHNEW  |b 000614014 
029 1 |a DEBBG  |b BV043775705 
029 1 |a DEBSZ  |b 449547329 
029 1 |a DEBSZ  |b 47278191X 
035 |a (OCoLC)836082894 
042 |a pcc 
050 0 0 |a QA76.87 
072 7 |a COM  |x 044000  |2 bisacsh 
082 0 0 |a 006.3/2  |2 23 
049 |a UAMI 
245 0 0 |a Neurocomputing :  |b learning, architectures, and modeling /  |c Elizabeth T. Mueller, editor. 
264 1 |a New York :  |b Nova Science Publishers, Inc.,  |c [2012] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computing science, technology and applications 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a NEUROCOMPUTING ; NEUROCOMPUTING ; CONTENTS ; PREFACE ; INTELLIGENT MARKET: A BRAIN-COMPUTER INTERFACE FOR ANALYZING INVESTMENT BEHAVIOR AND MARKET STABILITY ; ABSTRACT ; 1. INTRODUCTION ; 2. SYSTEM CON GURATION ; 2.1. Overview ; 2.2. Arti cial Market Component ; 2.2.1. Client Component ; 2.2.2. Server Component ; 2.3. Functional Brain Measurement and Real-Time Processing Component ; 2.3.1. fNIRS; 2.3.2. Speci cation of Measurement Sites ; 2.3.3. Real-Time Data Transfer and ltering ; 2.4. Construction of a Predictive Model of Investment Behavior and a Sequential Learning Component. 
505 8 |a 2.4.1. Predictive Factors 2.4.2. Ensemble Learning 1: Predicting Investment Behavior with an SVM; 2.4.3. Ensemble learning 2: Market Price Prediction by a Bayesian 3-Layer Percep-Tron ; (A) 3-Layer Perceptron ; (B) Prior Distribution of Parameters and Hyperparameters ; (C) Hyperparameter Marginal Likelihood ; (D) Mean Squared Deviation ; 3. ASSESSMENT OF THE SYSTEM ; 3.1. Experimental Procedures; 3.2. Investment Decisions; 3.3. Introduction of a CTA; 3.4. Performance Assessment ; 3.5. Market Price Prediction ; 4. CONCLUSION ; 1. APPENDIX A: BAYESIAN THREE-LAYER PERCEPTRON ; (i) Perceptron. 
505 8 |a (Ii) Prior Distributions (ii-a) Prior distribution of parameters k=(a, b, c) ; (ii-b) Prior distribution of hyperparameters Üc ; (ii-c) Prior distribution of hyperparameters . ; (iii) Likelihood ; (iv) Posteriori Distributions ; (iv-a) Conditional posterior distribution of parameters k=(a, b, c) ; (iv-b) Conditional posterior distribution of hyperparameter Üc ; (iv-c) Conditional posterior distribution of hyperparameters Ý ; (V) Markov Chain Monte Carlo Sampling Method ; (v-a) Proposal distributions for sampling bki and ck ; 2. APPENDIX B: MODEL SELECTION ; REFERENCES. 
505 8 |a NEURAL-BASED IMAGE SEGMENTATION ARCHITECTURE WITH EXECUTION ON A GPU ABSTRACT ; 1. INTRODUCTION ; 2. GPU STREAM PROCESSING MODEL ; 2.1. Mapping Neural Architectures to a Stream Processing Model ; 3. DESCRIPTION OF THE NEURAL ARCHITECTURE ; 4. COLOUR OPPONENCY (COP) ; 4.1. Type I and Type III Cells ; 4.2. Type II Cells ; 5. BOUNDARY DETECTION (BOD) ; 5.1. Simple Cells ; 5.2. Complex Cells ; 5.3. Competition and Cooperation ; 5.3.1. Competition ; 5.3.2. Cooperation ; 6. CHROMATIC DIFFUSION (CHD) ; 6.1. Chromatic Double Opponent Cells (CDOC) ; 6.2. Diffusion; 7. SCALE FUSION (SCF) 
505 8 |a 8. EXPERIMENTAL RESULTS 8.1. GPU Implementation Performance ; 8.2. Performance in Presence of Noise ; 8.3. Importance of Colour Opponency ; 8.4. Illusory Boundary Generation ; 8.5. Berkeley Segmentation Tests ; 9. CONCLUSION AND FUTURE WORK ; ACKNOWLEDGMENTS ; A. MODEL EQUATIONS ; A1. Colour Opponency (CoP) ; A1.1. Type I and Type III Cells ; A1.2. Type II cells ; A2. Boundary Detection (BoD) ; A2.1. Simple Cells ; A2.2. Complex Cells; A2.3. Competition ; A2.4. Cooperation ; A3. Chromatic Diffusion (ChD) ; A4. Scale fusion (ScF) ; REFERENCES. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural computers. 
650 6 |a Ordinateurs neuronaux. 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 7 |a Neural computers  |2 fast 
700 1 |a Mueller, Elizabeth T.,  |e editor. 
776 0 8 |i Print version:  |t Neurocomputing.  |d New York : Nova Science Publishers, Inc., [2012]  |z 9781613246993  |w (DLC) 2011015619 
830 0 |a Computing science, technology and applications. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=542182  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3021549 
938 |a ebrary  |b EBRY  |n ebr10683288 
938 |a EBSCOhost  |b EBSC  |n 542182 
938 |a YBP Library Services  |b YANK  |n 10315840 
994 |a 92  |b IZTAP