|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn836082894 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
110527s2012 nyu ob 001 0 eng |
010 |
|
|
|a 2019713580
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d E7B
|d OCLCF
|d YDXCP
|d EBLCP
|d DEBSZ
|d AGLDB
|d VTS
|d AU@
|d STF
|d K6U
|d N$T
|d OCLCO
|d OCLCQ
|d M8D
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781624175985
|q (ebook)
|
020 |
|
|
|a 1624175988
|
020 |
|
|
|z 9781613246993
|q (hardcover)
|
020 |
|
|
|z 1613246994
|
029 |
1 |
|
|a CHNEW
|b 000614014
|
029 |
1 |
|
|a DEBBG
|b BV043775705
|
029 |
1 |
|
|a DEBSZ
|b 449547329
|
029 |
1 |
|
|a DEBSZ
|b 47278191X
|
035 |
|
|
|a (OCoLC)836082894
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA76.87
|
072 |
|
7 |
|a COM
|x 044000
|2 bisacsh
|
082 |
0 |
0 |
|a 006.3/2
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Neurocomputing :
|b learning, architectures, and modeling /
|c Elizabeth T. Mueller, editor.
|
264 |
|
1 |
|a New York :
|b Nova Science Publishers, Inc.,
|c [2012]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Computing science, technology and applications
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a NEUROCOMPUTING ; NEUROCOMPUTING ; CONTENTS ; PREFACE ; INTELLIGENT MARKET: A BRAIN-COMPUTER INTERFACE FOR ANALYZING INVESTMENT BEHAVIOR AND MARKET STABILITY ; ABSTRACT ; 1. INTRODUCTION ; 2. SYSTEM CON GURATION ; 2.1. Overview ; 2.2. Arti cial Market Component ; 2.2.1. Client Component ; 2.2.2. Server Component ; 2.3. Functional Brain Measurement and Real-Time Processing Component ; 2.3.1. fNIRS; 2.3.2. Speci cation of Measurement Sites ; 2.3.3. Real-Time Data Transfer and ltering ; 2.4. Construction of a Predictive Model of Investment Behavior and a Sequential Learning Component.
|
505 |
8 |
|
|a 2.4.1. Predictive Factors 2.4.2. Ensemble Learning 1: Predicting Investment Behavior with an SVM; 2.4.3. Ensemble learning 2: Market Price Prediction by a Bayesian 3-Layer Percep-Tron ; (A) 3-Layer Perceptron ; (B) Prior Distribution of Parameters and Hyperparameters ; (C) Hyperparameter Marginal Likelihood ; (D) Mean Squared Deviation ; 3. ASSESSMENT OF THE SYSTEM ; 3.1. Experimental Procedures; 3.2. Investment Decisions; 3.3. Introduction of a CTA; 3.4. Performance Assessment ; 3.5. Market Price Prediction ; 4. CONCLUSION ; 1. APPENDIX A: BAYESIAN THREE-LAYER PERCEPTRON ; (i) Perceptron.
|
505 |
8 |
|
|a (Ii) Prior Distributions (ii-a) Prior distribution of parameters k=(a, b, c) ; (ii-b) Prior distribution of hyperparameters Üc ; (ii-c) Prior distribution of hyperparameters . ; (iii) Likelihood ; (iv) Posteriori Distributions ; (iv-a) Conditional posterior distribution of parameters k=(a, b, c) ; (iv-b) Conditional posterior distribution of hyperparameter Üc ; (iv-c) Conditional posterior distribution of hyperparameters Ý ; (V) Markov Chain Monte Carlo Sampling Method ; (v-a) Proposal distributions for sampling bki and ck ; 2. APPENDIX B: MODEL SELECTION ; REFERENCES.
|
505 |
8 |
|
|a NEURAL-BASED IMAGE SEGMENTATION ARCHITECTURE WITH EXECUTION ON A GPU ABSTRACT ; 1. INTRODUCTION ; 2. GPU STREAM PROCESSING MODEL ; 2.1. Mapping Neural Architectures to a Stream Processing Model ; 3. DESCRIPTION OF THE NEURAL ARCHITECTURE ; 4. COLOUR OPPONENCY (COP) ; 4.1. Type I and Type III Cells ; 4.2. Type II Cells ; 5. BOUNDARY DETECTION (BOD) ; 5.1. Simple Cells ; 5.2. Complex Cells ; 5.3. Competition and Cooperation ; 5.3.1. Competition ; 5.3.2. Cooperation ; 6. CHROMATIC DIFFUSION (CHD) ; 6.1. Chromatic Double Opponent Cells (CDOC) ; 6.2. Diffusion; 7. SCALE FUSION (SCF)
|
505 |
8 |
|
|a 8. EXPERIMENTAL RESULTS 8.1. GPU Implementation Performance ; 8.2. Performance in Presence of Noise ; 8.3. Importance of Colour Opponency ; 8.4. Illusory Boundary Generation ; 8.5. Berkeley Segmentation Tests ; 9. CONCLUSION AND FUTURE WORK ; ACKNOWLEDGMENTS ; A. MODEL EQUATIONS ; A1. Colour Opponency (CoP) ; A1.1. Type I and Type III Cells ; A1.2. Type II cells ; A2. Boundary Detection (BoD) ; A2.1. Simple Cells ; A2.2. Complex Cells; A2.3. Competition ; A2.4. Cooperation ; A3. Chromatic Diffusion (ChD) ; A4. Scale fusion (ScF) ; REFERENCES.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Neural computers.
|
650 |
|
6 |
|a Ordinateurs neuronaux.
|
650 |
|
7 |
|a COMPUTERS
|x Neural Networks.
|2 bisacsh
|
650 |
|
7 |
|a Neural computers
|2 fast
|
700 |
1 |
|
|a Mueller, Elizabeth T.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Neurocomputing.
|d New York : Nova Science Publishers, Inc., [2012]
|z 9781613246993
|w (DLC) 2011015619
|
830 |
|
0 |
|a Computing science, technology and applications.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=542182
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3021549
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10683288
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 542182
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10315840
|
994 |
|
|
|a 92
|b IZTAP
|