|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn834603518 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m eo d |
007 |
cr cn||||m|||a |
008 |
130401s2013 nyu foab 001 0 eng d |
040 |
|
|
|a NYMPP
|b eng
|e pn
|c NYMPP
|d OCLCO
|d N$T
|d E7B
|d YDXCP
|d B24X7
|d OCLCF
|d OCLCQ
|d AGLDB
|d VGM
|d K6U
|d UPM
|d MERER
|d OCLCQ
|d STF
|d OCLCQ
|d VTS
|d LOA
|d CUY
|d OCLCQ
|d ICG
|d U3W
|d CNCEN
|d OCLCQ
|d G3B
|d LVT
|d YOU
|d S8J
|d S9I
|d D6H
|d M8D
|d UKAHL
|d VLY
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1162525732
|a 1241851357
|
020 |
|
|
|a 9781606502716
|q (electronic bk.)
|
020 |
|
|
|a 1606502719
|q (electronic bk.)
|
020 |
|
|
|z 9781606502693
|q (print)
|
020 |
|
|
|z 1606502697
|q (print)
|
020 |
|
|
|a 1299281672
|
020 |
|
|
|a 9781299281677
|
024 |
7 |
|
|a 10.5643/9781606502716
|2 doi
|
029 |
1 |
|
|a DEBBG
|b BV043775510
|
029 |
1 |
|
|a DEBSZ
|b 472779893
|
029 |
1 |
|
|a NZ1
|b 15180645
|
035 |
|
|
|a (OCoLC)834603518
|z (OCoLC)1162525732
|z (OCoLC)1241851357
|
050 |
|
4 |
|a TA357
|b .D673 2013
|
072 |
|
7 |
|a TEC
|x 021000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.106
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dorfman, A. Sh.
|q (Abram Shlemovich)
|
245 |
1 |
0 |
|a Classical and modern engineering methods in fluid flow and heat transfer :
|b an introduction for engineers and students /
|c Abram Dorfman.
|
260 |
|
|
|a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
|b Momentum Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (xxxvii, 385 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Title from PDF title page (viewed April 1, 2013).
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
505 |
0 |
|
|a List of figures -- List of examples -- Nomenclature -- Preface -- Acknowledgment -- About the author.
|
505 |
8 |
|
|a Part I. Classical methods in fluid flow and heat transfer -- 1. Methods in heat transfer of solids -- 1.1 Historical notes -- 1.2 Heat conduction equation and problem formulation -- 1.2.1 Cartesian coordinates -- 1.2.2 Orthogonal curvilinear coordinates -- 1.2.3 Universal function for heat flux on an arbitrary nonisothermal surface -- 1.2.4 Initial, boundary, and conjugate conditions -- Exercises 1.1-1.12 -- 1.3 Solution using error integral -- 1.3.1 An infinite solid or thin, laterally insulated rod -- 1.3.2 A semi-infinite solid or thin, laterally insulated rod -- 1.4 Duhamel's method -- 1.4.1 Duhamel integral derivation -- 1.4.2 Time-dependent surface temperature -- Exercises 1.13-1.27 -- 1.5 Method of separation variables -- 1.5.1 General approach, homogeneous, and inhomogeneous problems -- 1.5.2 One-dimensional unsteady problems -- 1.5.3 Orthogonality of Eigenfunctions -- Exercises 1.28-1.43 -- 1.5.4 Two-dimensional steady problems -- 1.6 Integral transforms -- 1.6.1 Fourier transform -- 1.6.2 Laplace transform -- 1.7 Green's function method -- Exercises 1.44-1.60.
|
505 |
8 |
|
|a 2. Methods in laminar fluid flow and heat transfer -- 2.1 A brief history -- 2.2 Navier-Stokes, energy, and mass transfer equations -- 2.2.1 Two types of transport mechanism, analogy between transfer processes -- 2.2.2 Different forms of Navier-Stokes, energy, and diffusion equations -- 2.2.2.1 Vector form -- 2.2.2.2 Einstein and other index notation -- 2.2.2.3 Vorticity form of the Navier-Stokes equation -- 2.2.2.4 Stream function form of the Navier-Stokes equation -- 2.2.2.5 Irrotational inviscid two-dimensional flows -- 2.2.2.6 Curvilinear orthogonal coordinates -- Exercises 2.1-2.24 -- 2.3 Initial and boundary conditions -- 2.3.1 Navier-Stokes equations -- 2.3.2 Specific issues of the energy equation -- 2.4 Exact solutions of Navier-Stokes and energy equations -- 2.4.1 Two Stokes problems -- 2.4.2 Solutions of three other unsteady problems -- 2.4.3 Steady flow in channels and in a circular tube -- 2.4.4 Stagnation point flow (Hiemenz flow) -- 2.4.5 Other exact solutions -- 2.4.6 Some exact solutions of the energy equation -- 2.4.6.1 Couette flow in a channel with heated walls -- 2.4.6.2 Adiabatic wall temperature -- 2.4.6.3 Temperature distributions in channels and in a tube -- 2.5 Cases of small and large Reynolds and Peclet numbers -- 2.5.1 Creeping approximation (small Reynolds and Peclet numbers) -- 2.5.1.1 Stokes flow past a sphere -- 2.5.1.2 Oseen's approximation -- 2.5.1.3 Heat transfer from the sphere in the stokes flow -- 2.5.2 Boundary-layer approximation (large Reynolds and Peclet numbers) -- 2.5.2.1 Derivation of boundary-layer equations -- 2.5.2.2 Prandtl-Mises and Görtler transformations -- 2.5.2.3 Theory of similarity and dimensionless numbers -- 2.5.2.4 Boundary-layer equations of higher order -- Exercises 2.25-2.65 -- 2.6 Exact solutions of the boundary-layer equations -- 2.6.1 Flow and heat transfer on an isothermal semi-infinite flat plate (Blasius and Pohlhausen solutions) -- 2.6.2 Self-similar flows in dynamic and thermal boundary layers -- 2.6.3 Solutions in the power series form -- 2.6.4 Flow in the case of potential velocity u(x) = u0 -- axn (Howarth flow) -- 2.6.5 Fluid flows interaction -- 2.6.5.1 Flow in the wake of a body -- 2.6.5.2 Two-dimensional jet -- 2.6.5.3 Mixing layer of two parallel streams -- 2.6.6 Flow in straight and convergent channels -- 2.6.7 Solutions of second-order boundary-layer equations -- 2.6.8 Solutions of the thermal boundary-layer equation -- Exercises 2.66-2.88 -- 2.7 Approximate methods in the boundary-layer theory -- 2.7.1 Karman-Pohlhausen integral method -- 2.7.1.1 Friction and heat transfer on a flat plate -- 2.7.1.2 Flows with pressure gradients -- 2.7.2 Linearization of the momentum boundary-layer equation -- 2.7.2.1 Flow at the outer edge of the boundary layer -- 2.7.2.2 Universal function for the skin friction coefficient -- 2.7.3 Thermal boundary-layer equations for limiting Prandtl numbers -- 2.8 Natural convection -- Exercises 2.89-2.17.
|
505 |
8 |
|
|a 3. Methods in turbulent fluid flow and heat transfer -- 3.1 Transition from laminar to turbulent flow -- 3.1.1 Basic characteristics -- 3.1.2 The problem of laminar flow stability -- 3.2 Reynolds-averaged Navier-Stokes equation -- 3.2.1 Some physical aspects -- 3.2.2 Reynolds averaging -- 3.2.3 Reynolds equations and Reynolds stresses -- 3.3 Algebraic models -- 3.3.1 Prandtl's mixing-length hypothesis -- 3.3.2 Modern structure of velocity profile in turbulent boundary layer -- Exercises 3.1-3.22 -- 3.3.3 Mellor-Gibson model [9, 10, 13, 18] -- 3.3.4 Cebeci-Smith model [13] -- 3.3.5 Baldwin-Lomax model [18] -- 3.3.6 Application of the algebraic models -- 3.3.6.1 The far wake -- 3.3.6.2 The two-dimensional jet -- 3.3.6.3 Mixing layer of two parallel streams -- 3.3.6.4 Flows in channel and pipe -- 3.3.6.5 The boundary-layer flows -- 3.3.6.6 Heat transfer from an isothermal surface -- 3.3.6.7 The effect of the turbulent Prandtl number -- 3.3.7 The 1/2 equation model -- 3.3.8 Applicability of the algebraic models -- Exercises 3.23-3.40 -- 3.4 One-equation and two-equation models -- 3.4.1 Turbulence kinetic energy equation -- 3.4.2 One-equation models -- 3.4.3 Two-equation models -- 3.4.3.1 The k -- w model -- 3.4.3.2 The k -- e model -- 3.4.3.3 The other turbulence models -- 3.4.4 Applicability of the one-equation and two-equation models -- 3.5 Integral methods -- Exercises 3.41-3.56.
|
505 |
8 |
|
|a Part II. Modern conjugate methods in heat transfer and fluid flow -- Introduction -- Concept of conjugation -- Why and when are conjugate methods required?
|
505 |
8 |
|
|a 4. Conjugate heat transfer problem as a conduction problem -- 4.1 Formulation of conjugate heat transfer problem -- 4.2 Universal function for laminar fluid flow -- 4.2.1 Universal function for heat flux in self-similar flows as an exact solution of a thermal boundary-layer equation -- 4.2.2 Universal function for heat flux in arbitrary pressure gradient flow -- 4.2.3 Integral universal function for heat flux in arbitrary pressure gradient flow -- 4.2.4 Examples of applications of universal functions for heart flux -- Exercises 4.1-4.32 -- 4.2.5 Universal function for a temperature head -- 4.2.6 Universal function for unsteady heat flux in self-similar flow -- 4.2.7 Universal function for heat flux in compressible fluid flow -- 4.2.8 Universal function for heat flux for a moving continuous sheet -- 4.2.9 Universal function for power-law non-Newtonian fluids -- 4.2.10 Universal function for the recovery factor -- 4.2.11 Universal function for an axisymmetric body -- Exercises 4.33-4.50 -- 4.3 Universal functions for turbulent flow -- 4.4 Reducing a conjugate problem to a conduction problem -- 4.4.1 Universal function as a general boundary condition -- 4.4.2 Estimation of errors caused by boundary condition of the third kind -- 4.4.3 Equivalent conduction problem with the combined boundary condition -- 4.4.4 Equivalent conduction problem for unsteady heat transfer -- Exercises 4.51-4.61.
|
505 |
8 |
|
|a 5. General properties of nonisothermal and conjugate heat transfer -- 5.1 Effect of temperature head distribution: temperature head decreasing-basic reason for low heat transfer rate -- 5.1.1 Effect of the temperature head gradient -- 5.1.2 Effect of flow regime -- 5.1.3 Effect of pressure gradient -- 5.2 Biot number, a measure of problem conjugation -- 5.3 Gradient analogy -- 5.4 Heat flux inversion -- 5.5 Zero heat transfer surfaces -- 5.6 Examples of optimizing heat transfer in flow over bodies -- Exercises 5.1-5.30.
|
505 |
8 |
|
|a 6. Conjugate heat transfer in flow past plates, charts for solving conjugate heat transfer problems -- 6.1 Temperature singularities on the solid-fluid interface -- 6.1.1 Basic equations -- 6.1.2 Singularity types -- 6.1.2.1. Laminar flow at the stagnation point -- 6.1.2.2. Laminar flow at zero-pressure gradient -- 6.1.2.3. Turbulent flow at zero-pressure gradient -- 6.1.2.4. Laminar gradient flow with power-law free-stream velocity cx m -- 6.1.2.5. Asymmetric laminar-turbulent flow -- 6.2 Charts for solving conjugate heat transfer -- 6.2.1 Charts development -- 6.2.2 Using charts -- Exercises 6.1-6.17 -- 6.3 Applicability of charts and one-dimensional approach -- 6.3.1 Refining and estimating accuracy of the charts data -- 6.3.2 Applicability of thermally thin body assumption -- 6.3.3 Applicability of the one-dimensional approach and two-dimensional effects -- 6.4 Conjugate heat transfer in flow past plates -- Exercises 6.18-6.31 -- Conclusion of heat transfer investigation (chapters 4-6) -- Should any heat transfer problem be considered as a conjugate?
|
505 |
8 |
|
|a 7. Peristaltic motion as a conjugate problem: motion in channels with flexible walls -- 7.1 What is the peristaltic motion like? -- 7.2 Formulation of the conjugate problem -- 7.3 Early works -- 7.4 Semi-conjugate solutions -- 7.5 Conjugate solutions -- Exercises 7.1-7.24 -- Part III. Numerical methods in fluid flow and heat transfer.
|
505 |
8 |
|
|a 8. Classical numerical methods in fluid flow and heat transfer -- 8.1 Why analytical or numerical methods? -- 8.2 Approximate methods for solving differential equations -- 8.3 Some features of computing flow and heat transfer characteristics -- 8.3.1 Control-volume finite-difference method -- 8.3.1.1 Computing pressure and velocity -- 8.3.1.2 Computing convection-diffusion terms -- 8.3.1.3 False diffusion -- 8.3.2 Control-volume finite-element method -- 8.4 Numerial methods of conjugation -- Exercises 8.1-8.27.
|
505 |
8 |
|
|a 9. Modern numerical methods in turbulence -- 9.1 Introduction -- 9.2 Direct numerical simulation -- 9.3 Large eddy simulation -- 9.4 Detached eddy simulation -- 9.5 Chaos theory -- 9.6 Concluding remarks -- Exercises 9.1-9.12.
|
505 |
8 |
|
|a Part IV. Applications in engineering, biology, and medicine -- 10. Heat transfer in thermal and cooling systems -- 10.1 Heat exchangers and pipes -- 10.1.1 Pipes and channels -- 10.1.2 Heat exchangers and finned surfaces -- 10.2 Cooling systems -- 10.2.1 Electronic packages -- 10.2.2 Turbine blades and rocket -- 10.2.3 Nuclear reactor -- 10.3 Energy systems.
|
505 |
8 |
|
|a 11. Heat and mass transfer in technology processes -- 11.1 Multiphase and phase-changing processes -- 11.2 Manufacturing processes simulation -- 11.3 Draing technology -- 11.4 Food processing.
|
505 |
8 |
|
|a 12. Fluid flow and heat transfer in biology and clinical medicine -- 12.1 Blood flow in normal and pathologic vessels -- 12.2 Peristaltic flow in disordered human organs -- 12.3 Biologic transport processes.
|
505 |
8 |
|
|a Conclusion -- Appendix -- Cited pioneers, contributors -- Author index -- Index.
|
520 |
3 |
|
|a This book presents contemporary theoretical methods in fluid flow and heat transfer, emphasizing principles of investigation and modeling of natural phenomena and engineering processes. It is organized into four parts and 12 chapters presenting classical and modern methods. Following the classical methods in Part 1, Part 2 offers in-depth coverage of analytical conjugate methods in convective heat transfer and peristaltic flow. Part 3 explains recent developments in numerical methods including new approaches for simulation of turbulence by direct solution of Navier-Stokes equations. Part 4 provides a wealth of applications in industrial systems, technology processes, biology, and medicine. More than a hundred examples show the applicability of the methods in such areas as nuclear reactors, aerospace, crystal growth, turbine blades, electronics packaging, optical fiber coating, wire casting, blood flow, urinary problems, and food processing.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Fluid mechanics.
|
650 |
|
0 |
|a Heat
|x Transmission.
|
650 |
|
6 |
|a Mécanique des fluides.
|
650 |
|
6 |
|a Chaleur
|x Transmission.
|
650 |
|
7 |
|a heat transmission.
|2 aat
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Material Science.
|2 bisacsh
|
650 |
|
7 |
|a Fluid mechanics.
|2 fast
|0 (OCoLC)fst00927999
|
650 |
|
7 |
|a Heat
|x Transmission.
|2 fast
|0 (OCoLC)fst00953826
|
653 |
|
|
|a fluid flow
|
653 |
|
|
|a heat transfer
|
653 |
|
|
|a classical methods
|
653 |
|
|
|a modern methods
|
653 |
|
|
|a analytical
|
653 |
|
|
|a numerical
|
653 |
|
|
|a exact
|
653 |
|
|
|a approximation
|
653 |
|
|
|a laminar/ turbulent flows
|
653 |
|
|
|a laminar flow stability theory
|
653 |
|
|
|a solid heat transfer
|
653 |
|
|
|a strong comprehension presentation
|
653 |
|
|
|a conjugate heat transfer
|
653 |
|
|
|a criteria conjugate/common approach
|
653 |
|
|
|a conjugate/semi-conjugate peristaltic flow
|
653 |
|
|
|a 78 fluid flow/heat transfer examples
|
653 |
|
|
|a 41 application conjugate engineering/biology/ medicine solutions
|
653 |
|
|
|a 417 fluid flow/heat transfer exercises
|
653 |
|
|
|a 109 mathematical/ historical comments
|
653 |
|
|
|a methods errors
|
653 |
|
|
|a criteria selection methods
|
653 |
|
|
|a Navier-Stokes equation forms
|
653 |
|
|
|a average Navier-Stokes equation (RANS)
|
653 |
|
|
|a boundary-layer theory
|
653 |
|
|
|a creeping flows
|
653 |
|
|
|a boundary conditions
|
653 |
|
|
|a Derichlet/ Neumann problems
|
653 |
|
|
|a algebraic/k - e / k - w turbulence models
|
653 |
|
|
|a classical numerical methods as weighted residuals
|
653 |
|
|
|a special numerical calculation difficulties
|
653 |
|
|
|a numerical conjugation approaches
|
653 |
|
|
|a modern numerical turbulence simulation DNS
|
653 |
|
|
|a LES
|
653 |
|
|
|a DES
|
776 |
0 |
8 |
|i Print version:
|z 1606502697
|z 9781606502693
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=547708
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34378843
|
938 |
|
|
|a Books 24x7
|b B247
|n bke00053431
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10678411
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 547708
|
938 |
|
|
|a Momentum Press
|b NYMP
|n 9781606502716
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10314128
|
994 |
|
|
|a 92
|b IZTAP
|