|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn834558358 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
130307s2013 gw a ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d OCLCO
|d N$T
|d OCLCA
|d AUW
|d OCLCF
|d OCLCQ
|d DEBSZ
|d LOA
|d COCUF
|d MOR
|d PIFAG
|d OCLCQ
|d U3W
|d STF
|d WRM
|d VTS
|d NRAMU
|d CRU
|d OCLCQ
|d INT
|d AU@
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 961552694
|a 962687144
|a 974664144
|a 974770122
|a 1018033893
|a 1043667331
|a 1058138215
|a 1058150479
|a 1087040701
|a 1097138087
|a 1124320659
|
020 |
|
|
|a 9783110250428
|q (electronic bk.)
|
020 |
|
|
|a 311025042X
|q (electronic bk.)
|
020 |
|
|
|a 3110250411
|
020 |
|
|
|a 9783110250411
|
020 |
|
|
|z 9783110250411
|
024 |
7 |
|
|a 10.1515/9783110250428
|2 doi
|
029 |
1 |
|
|a DEBBG
|b BV043110647
|
029 |
1 |
|
|a DEBSZ
|b 403735343
|
029 |
1 |
|
|a DEBSZ
|b 421273534
|
029 |
1 |
|
|a NZ1
|b 15587513
|
029 |
1 |
|
|a AU@
|b 000054193162
|
035 |
|
|
|a (OCoLC)834558358
|z (OCoLC)961552694
|z (OCoLC)962687144
|z (OCoLC)974664144
|z (OCoLC)974770122
|z (OCoLC)1018033893
|z (OCoLC)1043667331
|z (OCoLC)1058138215
|z (OCoLC)1058150479
|z (OCoLC)1087040701
|z (OCoLC)1097138087
|z (OCoLC)1124320659
|
050 |
|
4 |
|a QA323
|
072 |
|
7 |
|a MAT
|x 031000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.73
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Function spaces.
|n Volume 1 /
|c Luboš Pick [and others].
|
250 |
|
|
|a 2nd rev. and extended ed.
|
260 |
|
|
|a Berlin :
|b De Gruyter,
|c 2013.
|
300 |
|
|
|a 1 online resource (xv, 479 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter series in nonlinear analysis and applications,
|x 0941-813X ;
|v 14
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory.
|
505 |
8 |
|
|a 1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities.
|
505 |
8 |
|
|a 6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces.
|
520 |
|
|
|a This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volume 1 deals with Banach function spaces, Volume 2 with Sobolev-type spaces.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Ideal spaces.
|
650 |
|
0 |
|a Sobolev spaces.
|
650 |
|
0 |
|a Function spaces.
|
650 |
|
4 |
|a Function spaces
|v Congresses.
|
650 |
|
4 |
|a Functional analysis.
|
650 |
|
4 |
|a Mathematics.
|
650 |
|
6 |
|a Espaces parfaits.
|
650 |
|
6 |
|a Espaces de Sobolev.
|
650 |
|
6 |
|a Espaces fonctionnels.
|
650 |
|
7 |
|a MATHEMATICS
|x Transformations.
|2 bisacsh
|
650 |
|
7 |
|a Function spaces
|2 fast
|
650 |
|
7 |
|a Ideal spaces
|2 fast
|
650 |
|
7 |
|a Sobolev spaces
|2 fast
|
700 |
1 |
|
|a Pick, Luboš.
|
776 |
0 |
8 |
|i Print version:
|a Kufner, Alois.
|t Function Spaces, Volume 1.
|d Berlin : De Gruyter, ©2012
|z 9783110250411
|
830 |
|
0 |
|a De Gruyter series in nonlinear analysis and applications ;
|v 14.
|x 0941-813X
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=543942
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 3.12 Sequence spaces 3.13 Modes of convergence; 3.14 Compact subsets; 3.15 Weak convergence; 3.16 Isomorphism of Lp(O) and Lp(0, μ(O)); 3.17 Schauder bases; 3.18 Weak Lebesgue spaces; 3.19 Remarks; 4 Orlicz spaces; 4.1 Introduction; 4.2 Young function, Jensen inequality; 4.3 Complementary functions; 4.4 The Δ2-condition; 4.5 Comparison of Orlicz classes; 4.6 Orlicz spaces; 4.7 Hölder inequality in Orlicz spaces; 4.8 The Luxemburg norm; 4.9 Completeness of Orlicz spaces; 4.10 Convergence in Orlicz spaces; 4.11 Separability; 4.12 The space EΦ(Ω); 4.13 Continuous linear functionals.
|
880 |
8 |
|
|6 505-00/(S
|a 4.14 Compact subsets of Orlicz spaces 4.15 Further properties of Orlicz spaces; 4.16 Isomorphism properties, Schauder bases; 4.17 Comparison of Orlicz spaces; 5 Morrey and Campanato spaces; 5.1 Introduction; 5.2 Marcinkiewicz spaces; 5.3 Morrey and Campanato spaces; 5.4 Completeness; 5.5 Relations to Lebesgue spaces; 5.6 Some lemmas; 5.7 Embeddings; 5.8 The John-Nirenberg space; 5.9 Another definition of the space JN(Q); 5.10 Spaces Np; λ(Q); 5.11 Miscellaneous remarks; 6 Banach function spaces; 6.1 Banach function spaces; 6.2 Associate space; 6.3 Absolute continuity of the norm.
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10661461
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 543942
|
994 |
|
|
|a 92
|b IZTAP
|