Cargando…

Function spaces. Volume 1 /

This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pick, Luboš
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2013.
Edición:2nd rev. and extended ed.
Colección:De Gruyter series in nonlinear analysis and applications ; 14.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn834558358
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 130307s2013 gw a ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d OCLCO  |d N$T  |d OCLCA  |d AUW  |d OCLCF  |d OCLCQ  |d DEBSZ  |d LOA  |d COCUF  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d CRU  |d OCLCQ  |d INT  |d AU@  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 961552694  |a 962687144  |a 974664144  |a 974770122  |a 1018033893  |a 1043667331  |a 1058138215  |a 1058150479  |a 1087040701  |a 1097138087  |a 1124320659 
020 |a 9783110250428  |q (electronic bk.) 
020 |a 311025042X  |q (electronic bk.) 
020 |a 3110250411 
020 |a 9783110250411 
020 |z 9783110250411 
024 7 |a 10.1515/9783110250428  |2 doi 
029 1 |a DEBBG  |b BV043110647 
029 1 |a DEBSZ  |b 403735343 
029 1 |a DEBSZ  |b 421273534 
029 1 |a NZ1  |b 15587513 
029 1 |a AU@  |b 000054193162 
035 |a (OCoLC)834558358  |z (OCoLC)961552694  |z (OCoLC)962687144  |z (OCoLC)974664144  |z (OCoLC)974770122  |z (OCoLC)1018033893  |z (OCoLC)1043667331  |z (OCoLC)1058138215  |z (OCoLC)1058150479  |z (OCoLC)1087040701  |z (OCoLC)1097138087  |z (OCoLC)1124320659 
050 4 |a QA323 
072 7 |a MAT  |x 031000  |2 bisacsh 
082 0 4 |a 515.73 
049 |a UAMI 
245 0 0 |a Function spaces.  |n Volume 1 /  |c Luboš Pick [and others]. 
250 |a 2nd rev. and extended ed. 
260 |a Berlin :  |b De Gruyter,  |c 2013. 
300 |a 1 online resource (xv, 479 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter series in nonlinear analysis and applications,  |x 0941-813X ;  |v 14 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory. 
505 8 |a 1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities. 
505 8 |a 6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces. 
520 |a This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volume 1 deals with Banach function spaces, Volume 2 with Sobolev-type spaces. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Ideal spaces. 
650 0 |a Sobolev spaces. 
650 0 |a Function spaces. 
650 4 |a Function spaces  |v Congresses. 
650 4 |a Functional analysis. 
650 4 |a Mathematics. 
650 6 |a Espaces parfaits. 
650 6 |a Espaces de Sobolev. 
650 6 |a Espaces fonctionnels. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Function spaces  |2 fast 
650 7 |a Ideal spaces  |2 fast 
650 7 |a Sobolev spaces  |2 fast 
700 1 |a Pick, Luboš. 
776 0 8 |i Print version:  |a Kufner, Alois.  |t Function Spaces, Volume 1.  |d Berlin : De Gruyter, ©2012  |z 9783110250411 
830 0 |a De Gruyter series in nonlinear analysis and applications ;  |v 14.  |x 0941-813X 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=543942  |z Texto completo 
880 8 |6 505-00/(S  |a 3.12 Sequence spaces 3.13 Modes of convergence; 3.14 Compact subsets; 3.15 Weak convergence; 3.16 Isomorphism of Lp(O) and Lp(0, μ(O)); 3.17 Schauder bases; 3.18 Weak Lebesgue spaces; 3.19 Remarks; 4 Orlicz spaces; 4.1 Introduction; 4.2 Young function, Jensen inequality; 4.3 Complementary functions; 4.4 The Δ2-condition; 4.5 Comparison of Orlicz classes; 4.6 Orlicz spaces; 4.7 Hölder inequality in Orlicz spaces; 4.8 The Luxemburg norm; 4.9 Completeness of Orlicz spaces; 4.10 Convergence in Orlicz spaces; 4.11 Separability; 4.12 The space EΦ(Ω); 4.13 Continuous linear functionals. 
880 8 |6 505-00/(S  |a 4.14 Compact subsets of Orlicz spaces 4.15 Further properties of Orlicz spaces; 4.16 Isomorphism properties, Schauder bases; 4.17 Comparison of Orlicz spaces; 5 Morrey and Campanato spaces; 5.1 Introduction; 5.2 Marcinkiewicz spaces; 5.3 Morrey and Campanato spaces; 5.4 Completeness; 5.5 Relations to Lebesgue spaces; 5.6 Some lemmas; 5.7 Embeddings; 5.8 The John-Nirenberg space; 5.9 Another definition of the space JN(Q); 5.10 Spaces Np; λ(Q); 5.11 Miscellaneous remarks; 6 Banach function spaces; 6.1 Banach function spaces; 6.2 Associate space; 6.3 Absolute continuity of the norm. 
938 |a ebrary  |b EBRY  |n ebr10661461 
938 |a EBSCOhost  |b EBSC  |n 543942 
994 |a 92  |b IZTAP