|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBSCO_ocn833769054 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130330s2013 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d YDXCP
|d MHW
|d AUW
|d OCLCO
|d DEBSZ
|d UMI
|d COO
|d DEBBG
|d OCLCQ
|d OCLCF
|d CDX
|d CAMBR
|d N$T
|d AZU
|d IDEBK
|d E7B
|d UPM
|d CNSPO
|d VT2
|d OCLCQ
|d HEBIS
|d OCLCO
|d BUF
|d UUM
|d CEF
|d OCLCQ
|d WYU
|d AU@
|d OCLCQ
|d S8J
|d LVT
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|
019 |
|
|
|a 837185866
|a 837891615
|a 872140255
|a 1117881273
|a 1117895748
|
020 |
|
|
|a 9781107309234
|
020 |
|
|
|a 1107309239
|
020 |
|
|
|a 9781107035348
|
020 |
|
|
|a 1107035341
|
020 |
|
|
|a 9781139547895
|
020 |
|
|
|a 1139547895
|
020 |
|
|
|a 9781107314788
|
020 |
|
|
|a 110731478X
|
020 |
|
|
|a 9781299403185
|q (MyiLibrary)
|
020 |
|
|
|a 1299403182
|q (MyiLibrary)
|
020 |
|
|
|a 9781107471252
|q (paperback)
|
020 |
|
|
|a 1107471257
|
020 |
|
|
|a 9781107307032
|q (ebook)
|
020 |
|
|
|a 1107307031
|
029 |
1 |
|
|a DEBBG
|b BV042031894
|
029 |
1 |
|
|a DEBSZ
|b 381034313
|
029 |
1 |
|
|a DEBSZ
|b 414173554
|
029 |
1 |
|
|a NZ1
|b 15497281
|
035 |
|
|
|a (OCoLC)833769054
|z (OCoLC)837185866
|z (OCoLC)837891615
|z (OCoLC)872140255
|z (OCoLC)1117881273
|z (OCoLC)1117895748
|
037 |
|
|
|a CL0500000402
|b Safari Books Online
|
050 |
|
4 |
|a QA614.58 .K685 2013
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.353
|
084 |
|
|
|a MAT038000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kollár, János.
|
245 |
1 |
0 |
|a Singularities of the Minimal Model Program.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (382 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge Tracts in Mathematics
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Introduction; 1 Preliminaries; 1.1 Notation and conventions; 1.2 Minimal and canonical models; 1.3 Canonical models of pairs; 1.4 Canonical models as partial resolutions; 1.5 Some special singularities; 2 Canonical and log canonical singularities; 2.1 (Log) canonical and (log) terminal singularities; 2.2 Log canonical surface singularities; 2.3 Ramified covers; 2.4 Log terminal 3-fold singularities; 2.5 Rational pairs; 3 Examples; 3.1 First examples: cones; 3.2 Quotient singularities; 3.3 Classification of log canonical surface singularities; 3.4 More examples.
|
505 |
8 |
|
|a 3.5 Perturbations and deformations4 Adjunction and residues; 4.1 Adjunction for divisors; 4.2 Log canonical centers on dlt pairs; 4.3 Log canonical centers on lc pairs; 4.4 Crepant log structures; 4.5 Sources and springs of log canonical centers; 5 Semi-log canonical pairs; 5.1 Demi-normal schemes; 5.2 Statement of the main theorems; 5.3 Semi-log canonical surfaces; 5.4 Semi-divisorial log terminal pairs; 5.5 Log canonical stratifications; 5.6 Gluing relations and sources; 5.7 Descending the canonical bundle; 6 Du Bois property; 6.1 Du Bois singularities.
|
505 |
8 |
|
|a 6.2 Semi-log canonical singularities are Du Bois7 Log centers and depth; 7.1 Log centers and depth; 7.2 Minimal log discrepancy functions; 7.3 Depth of sheaves on slc pairs; 8 Survey of further results and applications; 8.1 Ideal sheaves and plurisubharmonic funtions; 8.2 Log canonical thresholds and the ACC conjecture; 8.3 Arc spaces of log canonical singularities; 8.4 F-regular and F-pure singularites; 8.5 Differential forms on log canonical pairs; 8.6 The topology of log canonical singularities; 8.7 Abundance conjecture; 8.8 Moduli spaces for varieties.
|
505 |
8 |
|
|a 8.9 Applications of log canonical pairs9 Finite equivalence relations; 9.1 Quotients by finite equivalence relations; 9.2 Descending seminormality of subschemes; 9.3 Descending line bundles to geometric quotients; 9.4 Pro-finite equivalence relations; 10 Ancillary results; 10.1 Birational maps of 2-dimensional schemes; 10.2 Seminormality; 10.3 Vanishing theorems; 10.4 Semi-log resolutions; 10.5 Pluricanonical representations; 10.6 Cubic hyperresolutions; References; Index.
|
520 |
|
|
|a An authoritative reference and the first comprehensive treatment of the singularities of the minimal model program.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Singularities (Mathematics)
|
650 |
|
0 |
|a Algebraic spaces.
|
650 |
|
6 |
|a Singularités (Mathématiques)
|
650 |
|
6 |
|a Espaces algébriques.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Algebraic spaces.
|2 fast
|0 (OCoLC)fst00804939
|
650 |
|
7 |
|a Singularities (Mathematics)
|2 fast
|0 (OCoLC)fst01119502
|
650 |
|
7 |
|a Singularität
|g Mathematik
|2 gnd
|
650 |
|
7 |
|a Algebraischer Raum
|2 gnd
|
700 |
1 |
|
|a Kovács, Sándor.
|
776 |
0 |
8 |
|i Print version:
|a Kollár, János.
|t Singularities of the Minimal Model Program.
|d Cambridge : Cambridge University Press, ©2013
|z 9781107035348
|
830 |
|
0 |
|a Cambridge tracts in mathematics.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=529668
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34207503
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28320468
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 25154418
|c 55.00 GBP
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1113117
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10679177
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 529668
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154418
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10394971
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10408805
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10859048
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12576361
|
994 |
|
|
|a 92
|b IZTAP
|