Cargando…

Lecture notes on the mathematical theory of generalized Boltzmann models /

This book is based on the idea that Boltzmann-like modelling methods can be developed to design, with special attention to applied sciences, kinetic-type models which are called generalized kinetic models. In particular, these models appear in evolution equations for the statistical distribution ove...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bellomo, N.
Otros Autores: Schiavo, Mauro Lo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, ©2000.
Colección:Series on advances in mathematics for applied sciences ; v. 51.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn833385054
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130329s2000 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d IDEBK  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d LEAUB  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9789812813336  |q (electronic bk.) 
020 |a 9812813330  |q (electronic bk.) 
020 |z 9810240783 
020 |z 9789810240783 
029 1 |a DEBBG  |b BV043068003 
029 1 |a DEBSZ  |b 421276894 
029 1 |a GBVCP  |b 804501432 
035 |a (OCoLC)833385054 
050 4 |a QC175.16.B6  |b B45 2000eb 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.13/6  |2 22 
049 |a UAMI 
100 1 |a Bellomo, N. 
245 1 0 |a Lecture notes on the mathematical theory of generalized Boltzmann models /  |c Nicola Bellomo, Mauro Lo Schiavo. 
246 3 0 |a Mathematical theory of generalized Boltzmann models 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2000. 
300 |a 1 online resource (xiii, 334 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on advances in mathematics for applied sciences ;  |v v. 51 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Ch. 1. Generalized kinetic models. 1.1. Introduction. 1.2. Generalized kinetic models. 1.3. Generalized models and plan of the book. 1.4. Aim of the book. 1.5. References -- ch. 2. Mathematical background: Measure, integration, topology. 2.1. Introduction. 2.2. Tools from measure theory. 2.3. Tools from integration Th. 2.4. Tools from topology. 2.5. References -- ch. 3. Models of population dynamics with stochastic interactions. 3.1. Introduction. 3.2. The generalized Jager and Segel model. 3.3. On the initial value problem. 3.4. Stationary points. 3.5. Applications and perspectives. 3.6. References -- ch. 4. Generalized kinetic models for coagulation and fragmentation. 4.1. Introduction. 4.2. Description of the models. 4.3. Mathematical problems. 4.4. Critical analysis and perspectives. 4.5. References -- ch. 5. Kinetic cellular models in the immune system competition. 5.1. Kinetic models towards immunology. 5.2. Scaling in kinetic cellular models. 5.3. Phenomenological system and modelling. 5.4. Kinetic evolution equations. 5.5. Qualitative analysis, applications, and perspectives. 5.6. References -- ch. 6. Kinetic models for the evolution of antigens generalized shape. 6.1. An introduction to the generalized shape. 6.2. The mathematical model. 6.3. On the initial value problem. 6.4. Applications and developments. 6.5. References -- ch. 7. The Boltzmann model. 7.1. Introduction. 7.2. The nonlinear Boltzmann equation. 7.3. Mathematical problems. 7.4. Analytic treatment. 7.5. Computational methods. 7.6. References -- ch. 8. Generalized kinetic models for traffic flow. 8.1. Introduction. 8.2. Traffic flow and hydrodynamics. 8.4. Perspectives. 8.5. References -- ch. 9. Dissipative kinetic models for disparate mixtures. 9.1. Introduction. 9.2. Dissipative collision dynamics. 9.3. Kinetic equations for mixtures of clusters. 9.4. Mixtures with continuous mass distribution. 9.5. Mathematical problems. 9.6. Perspectives in modelling. 9.7. References -- ch. 10. Research perspectives. 10.1. Introduction. 10.2. Discrete generalized models. 10.3. Looking for a general structure. 10.4. Development of new models. 10.5. Closure. 10.6. References. 
520 |a This book is based on the idea that Boltzmann-like modelling methods can be developed to design, with special attention to applied sciences, kinetic-type models which are called generalized kinetic models. In particular, these models appear in evolution equations for the statistical distribution over the physical state of each individual of a large population. The evolution is determined both by interactions among individuals and by external actions. Considering that generalized kinetic models can play an important role in dealing with several interesting systems in applied sciences, the book provides a unified presentation of this topic with direct reference to modelling, mathematical statement of problems, qualitative and computational analysis, and applications. Models reported and proposed in the book refer to several fields of natural, applied and technological sciences. In particular, the following classes of models are discussed: population dynamics and socio-economic behaviours, models of aggregation and fragmentation phenomena, models of biology and immunology, traffic flow models, models of mixtures and particles undergoing classic and dissipative interactions. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Maxwell-Boltzmann distribution law. 
650 0 |a Kinetic theory of matter  |x Mathematical models. 
650 6 |a Distribution de Maxwell-Boltzmann. 
650 6 |a Théorie cinétique de la matière  |x Modèles mathématiques. 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Kinetic theory of matter  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00987641 
650 7 |a Maxwell-Boltzmann distribution law.  |2 fast  |0 (OCoLC)fst01012685 
650 7 |a Maxwell-Boltzmann, Distribution de.  |2 ram 
650 7 |a Matière, Théorie cinétique de la.  |2 ram 
700 1 |a Schiavo, Mauro Lo. 
776 0 8 |i Print version:  |a Bellomo, N.  |t Lecture notes on the mathematical theory of generalized Boltzmann models.  |d River Edge, NJ : World Scientific, ©2000  |z 9810240783  |w (DLC) 99040190  |w (OCoLC)42080129 
830 0 |a Series on advances in mathematics for applied sciences ;  |v v. 51. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=532647  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685725 
938 |a ebrary  |b EBRY  |n ebr10699308 
938 |a EBSCOhost  |b EBSC  |n 532647 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25507054 
938 |a YBP Library Services  |b YANK  |n 10252912 
994 |a 92  |b IZTAP