Dislocations, mesoscale simulations and plastic flow /
Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Oxford University Press,
2013.
|
Colección: | Oxford series on materials modelling ;
5. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Background and Definitions
- 1.1. Introduction
- 1.2. Dislocation core properties
- 1.2.1. Core energy and structure
- 1.2.2. Cross-slip and the lattice resistance
- 1.3. Elastic properties of dislocations
- 1.3.1. Strain energy of a straight dislocation
- 1.3.2. Force on a dislocation
- 1.3.3. Line tension
- 1.3.4. Line tension strengthening
- 1.4. Dislocation velocity
- 1.4.1. Effective stress
- 1.4.2. Governing mechanisms
- 1.4.3. Orowan's law
- 1.5. Multiscale modelling
- 1.6. Introduction to 3D DD simulations
- 1.6.1. Brief historical sketch
- 1.6.2. Further implementation
- 2. Obstacle-controlled Plastic Flow
- 2.1. Outline
- 2.2. Free-flight velocity
- 2.2.1. The Peierls stress in fcc metals
- 2.2.2. Phonon drag
- 2.3. Dislocation
- dislocation interactions
- 2.3.1. Short-range interactions in fcc crystals
- 2.3.2. Junction formation and destruction
- 2.3.3. Jogs
- 2.4. Cross-slip in fee crystals
- 2.4.1. Models for compact cross-slip.
- Note continued: 2.4.2. The Friedel-Escaig mechanism
- 2.4.3. The activation energy for cross-slip
- 2.4.4. Escaig's effect and Escaig's barrier
- 2.4.5. Experimental checks
- 2.4.6. Stress-free constriction energies
- 2.4.7. Atomistic studies of cross-slip
- 2.4.8. The multiple roles of cross-slip
- 2.5. Flow stress and dislocation densities
- 2.5.1. Dislocation strengthening
- 2.5.2. Forest strengthening
- 2.5.3. Jog strengthening
- 2.5.4. Generalized dislocation strengthening
- 2.6. Mechanical response and microstructures
- 2.6.1. Resolved stress-strain curves
- 2.6.2. Stage I
- 2.6.3. Stage II
- 2.6.4. Stage III
- 2.6.5. Stage IV
- 2.6.6. Similitude and self-similarity
- 2.6.7. The storage-recovery model
- 2.7. Collective dislocation behaviour
- 2.7.1. The modelling of dislocation patterns
- 2.7.2. Dislocation avalanches
- 3. Lattice-controlled Plastic Flow
- 3.1. Outline
- 3.2. The lattice resistance in bcc metals
- 3.2.1. Deformation properties of bcc metals.
- Note continued: 3.2.2. Core structure of screw dislocations
- 3.2.3. Non-Schmid effects and Peierls stresses
- 3.2.4. Kink-pair mechanisms and models
- 3.2.5. Strengthening and softening in bcc metals
- 3.3. Prismatic slip in hcp metals
- 3.3.1. Slip systems and screw dislocation cores
- 3.3.2. The Peierls stress in Ti and Zr
- 3.3.3. Locking-unlocking in hcp metals
- 3.4. Dislocations in silicon
- 3.4.1. Introduction
- 3.4.2. Dislocations in the diamond cubic lattice
- 3.4.3. Dislocation cores in the glide set
- 3.4.4. Experimental methods
- 3.4.5. The multiplication yield point of silicon
- 3.4.6. Velocities in the kink-diffusion model
- 3.4.7. Dislocation velocities and activation energies
- 3.4.8. The length-independent regime
- 3.4.9. Dislocations at high stress
- 4.A Guide to 3D DD Simulations
- 4.1. Introduction
- 4.2. Elastic properties
- 4.2.1. Outline
- 4.2.2. Discretization of dislocation lines
- 4.2.3. Local procedures and optimization
- 4.2.4. Core fields.
- Note continued: 4.2.5. The self-stress
- 4.2.6. From self-stress to effective stress
- 4.2.7. Further optimization
- 4.2.8. Elastic anisotropy
- 4.2.9. Dissociated dislocations
- 4.3. Local rules
- 4.3.1. Outline
- 4.3.2. Dislocation mobility and velocity
- 4.3.3. Dislocation cross-slip
- 4.3.4. Other local rules
- 4.4. Boundary conditions
- 4.4.1. Periodic boundary conditions
- 4.4.2. Finite boundary conditions
- 4.4.3. Other methods for finite sizes
- 4.5. Current 3D DD simulations
- 5. Applications of DD Simulations
- 5.1. Outline
- 5.2. Dislocation intersections
- 5.2.1. Intersections and reactions
- 5.2.2. The interaction coefficients
- 5.3. Atomic-scale defects, precipitation strengthening
- 5.3.1. Dislocations and solute atoms
- 5.3.2. Dislocations and irradiation defects
- 5.3.3. Dislocation climb
- 5.3.4. Precipitation strengthening
- 5.4. Collective dislocation processes
- 5.4.1. Intermittency and avalanches
- 5.4.2. From intermittent to continuous flow.
- Note continued: 5.4.3. Dislocation patterns
- 5.4.4. Patterning in cyclic deformation
- 5.4.5. Shock loading, high strain rates
- 5.5. Size effects in plasticity
- 5.5.1. Introduction
- 5.5.2.A few examples
- 5.5.3. The silicon world
- 5.5.4. Thin metallic films
- 5.5.5. Small-scale pillars
- 5.6. Concluding remarks
- Appendices
- A. Thermal Activation of Dislocation Motion
- A.1. Mesoscale framework
- A.2. Orders of magnitude
- B. Selection of Materials Constants
- B.1. Stacking fault energies, dissociation widths
- B.2. Elastic constants, shear moduli
- C. Slip in Single Crystals
- C.1. The Peach-Koehler force
- C.2. Schmid's law, lattice rotation
- C.3. Active slip systems in fcc crystals
- D. From [gamma]-surface to Peierls Stress
- E. Kink-pair Models
- E.1. Dislocations and Peierls potentials
- E.2. High-stress solutions
- E.3. Kink-pairs at low stresses
- E.4. The kink-diffusion model.