Cargando…

Dislocations, mesoscale simulations and plastic flow /

Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kubin, L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2013.
Colección:Oxford series on materials modelling ; 5.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Background and Definitions
  • 1.1. Introduction
  • 1.2. Dislocation core properties
  • 1.2.1. Core energy and structure
  • 1.2.2. Cross-slip and the lattice resistance
  • 1.3. Elastic properties of dislocations
  • 1.3.1. Strain energy of a straight dislocation
  • 1.3.2. Force on a dislocation
  • 1.3.3. Line tension
  • 1.3.4. Line tension strengthening
  • 1.4. Dislocation velocity
  • 1.4.1. Effective stress
  • 1.4.2. Governing mechanisms
  • 1.4.3. Orowan's law
  • 1.5. Multiscale modelling
  • 1.6. Introduction to 3D DD simulations
  • 1.6.1. Brief historical sketch
  • 1.6.2. Further implementation
  • 2. Obstacle-controlled Plastic Flow
  • 2.1. Outline
  • 2.2. Free-flight velocity
  • 2.2.1. The Peierls stress in fcc metals
  • 2.2.2. Phonon drag
  • 2.3. Dislocation
  • dislocation interactions
  • 2.3.1. Short-range interactions in fcc crystals
  • 2.3.2. Junction formation and destruction
  • 2.3.3. Jogs
  • 2.4. Cross-slip in fee crystals
  • 2.4.1. Models for compact cross-slip.
  • Note continued: 2.4.2. The Friedel-Escaig mechanism
  • 2.4.3. The activation energy for cross-slip
  • 2.4.4. Escaig's effect and Escaig's barrier
  • 2.4.5. Experimental checks
  • 2.4.6. Stress-free constriction energies
  • 2.4.7. Atomistic studies of cross-slip
  • 2.4.8. The multiple roles of cross-slip
  • 2.5. Flow stress and dislocation densities
  • 2.5.1. Dislocation strengthening
  • 2.5.2. Forest strengthening
  • 2.5.3. Jog strengthening
  • 2.5.4. Generalized dislocation strengthening
  • 2.6. Mechanical response and microstructures
  • 2.6.1. Resolved stress-strain curves
  • 2.6.2. Stage I
  • 2.6.3. Stage II
  • 2.6.4. Stage III
  • 2.6.5. Stage IV
  • 2.6.6. Similitude and self-similarity
  • 2.6.7. The storage-recovery model
  • 2.7. Collective dislocation behaviour
  • 2.7.1. The modelling of dislocation patterns
  • 2.7.2. Dislocation avalanches
  • 3. Lattice-controlled Plastic Flow
  • 3.1. Outline
  • 3.2. The lattice resistance in bcc metals
  • 3.2.1. Deformation properties of bcc metals.
  • Note continued: 3.2.2. Core structure of screw dislocations
  • 3.2.3. Non-Schmid effects and Peierls stresses
  • 3.2.4. Kink-pair mechanisms and models
  • 3.2.5. Strengthening and softening in bcc metals
  • 3.3. Prismatic slip in hcp metals
  • 3.3.1. Slip systems and screw dislocation cores
  • 3.3.2. The Peierls stress in Ti and Zr
  • 3.3.3. Locking-unlocking in hcp metals
  • 3.4. Dislocations in silicon
  • 3.4.1. Introduction
  • 3.4.2. Dislocations in the diamond cubic lattice
  • 3.4.3. Dislocation cores in the glide set
  • 3.4.4. Experimental methods
  • 3.4.5. The multiplication yield point of silicon
  • 3.4.6. Velocities in the kink-diffusion model
  • 3.4.7. Dislocation velocities and activation energies
  • 3.4.8. The length-independent regime
  • 3.4.9. Dislocations at high stress
  • 4.A Guide to 3D DD Simulations
  • 4.1. Introduction
  • 4.2. Elastic properties
  • 4.2.1. Outline
  • 4.2.2. Discretization of dislocation lines
  • 4.2.3. Local procedures and optimization
  • 4.2.4. Core fields.
  • Note continued: 4.2.5. The self-stress
  • 4.2.6. From self-stress to effective stress
  • 4.2.7. Further optimization
  • 4.2.8. Elastic anisotropy
  • 4.2.9. Dissociated dislocations
  • 4.3. Local rules
  • 4.3.1. Outline
  • 4.3.2. Dislocation mobility and velocity
  • 4.3.3. Dislocation cross-slip
  • 4.3.4. Other local rules
  • 4.4. Boundary conditions
  • 4.4.1. Periodic boundary conditions
  • 4.4.2. Finite boundary conditions
  • 4.4.3. Other methods for finite sizes
  • 4.5. Current 3D DD simulations
  • 5. Applications of DD Simulations
  • 5.1. Outline
  • 5.2. Dislocation intersections
  • 5.2.1. Intersections and reactions
  • 5.2.2. The interaction coefficients
  • 5.3. Atomic-scale defects, precipitation strengthening
  • 5.3.1. Dislocations and solute atoms
  • 5.3.2. Dislocations and irradiation defects
  • 5.3.3. Dislocation climb
  • 5.3.4. Precipitation strengthening
  • 5.4. Collective dislocation processes
  • 5.4.1. Intermittency and avalanches
  • 5.4.2. From intermittent to continuous flow.
  • Note continued: 5.4.3. Dislocation patterns
  • 5.4.4. Patterning in cyclic deformation
  • 5.4.5. Shock loading, high strain rates
  • 5.5. Size effects in plasticity
  • 5.5.1. Introduction
  • 5.5.2.A few examples
  • 5.5.3. The silicon world
  • 5.5.4. Thin metallic films
  • 5.5.5. Small-scale pillars
  • 5.6. Concluding remarks
  • Appendices
  • A. Thermal Activation of Dislocation Motion
  • A.1. Mesoscale framework
  • A.2. Orders of magnitude
  • B. Selection of Materials Constants
  • B.1. Stacking fault energies, dissociation widths
  • B.2. Elastic constants, shear moduli
  • C. Slip in Single Crystals
  • C.1. The Peach-Koehler force
  • C.2. Schmid's law, lattice rotation
  • C.3. Active slip systems in fcc crystals
  • D. From [gamma]-surface to Peierls Stress
  • E. Kink-pair Models
  • E.1. Dislocations and Peierls potentials
  • E.2. High-stress solutions
  • E.3. Kink-pairs at low stresses
  • E.4. The kink-diffusion model.