Cargando…

Solitons, nonlinear evolution equations and inverse scattering /

Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scatte...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ablowitz, Mark J.
Otros Autores: Clark, P. A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1991.
Colección:London Mathematical Society lecture note series ; 149.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn833139674
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130328s1991 enkaf ob 000 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 708567384 
020 |a 9781107361614  |q (electronic bk.) 
020 |a 1107361613  |q (electronic bk.) 
020 |a 9780511623998  |q (e-book) 
020 |a 0511623992  |q (e-book) 
020 |z 0521387302 
020 |z 9780521387309 
029 1 |a DEBBG  |b BV043056227 
029 1 |a DEBSZ  |b 446429554 
035 |a (OCoLC)833139674  |z (OCoLC)708567384 
050 4 |a QA427  |b .A34 1991eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 515.353  |2 22 
049 |a UAMI 
100 1 |a Ablowitz, Mark J. 
245 1 0 |a Solitons, nonlinear evolution equations and inverse scattering /  |c M.J. Ablowitz and P.A. Clark. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1991. 
300 |a 1 online resource (516 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 149 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
520 |a Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scattering in multi-dimensions, integrable nonlinear evolution equations in multi-dimensions and the ∂ method. Thus, this book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory. 
505 0 |a Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Historical remarks and applications; 1.2 Physical Derivation of the Kadomtsev-Petviashvili equation; 1.3 Travelling wave solutions of the Korteweg-de Vries equation; 1.4 The discovery of the soliton; 1.5 An infinite number of conserved quantities; 1.6 Fourier transforms; 1.7 The associated linear scattering problem and inverse scattering; 1.7.1 The inverse scattering method; 1.7.2 Reflectionless potentials; 1.8 Lax's generalization; 1.9 Linear scattering problems and associated nonlinear evolution equations 
505 8 |a 1.10 Generalizations of the I.S.T. in one spatial dimension1.11 Classes of integrable equations; 1.11.1 Ordinary differential equations; 1.11.2 Partial differential equations in one spatial dimension; 1.11.3 Differential-difference equations; 1.11.4 Singular integro-differential equations; 1.11.5 Partial differential equations in two spatial dimensions; 1.11.6 Multidimensional scattering equations; 1.11.7 Multidimensional differential geometric equations; 1.11.8 The Self-dual Yang-Mills equations; 2 Inverse Scattering for the Korteweg-de Vries Equation; 2.1 Introduction 
505 8 |a 2.2 The direct scattering problem2.3 The inverse scattering problem; 2.4 The time dependence; 2.5 Further remarks; 2.5.1 Soliton solutions; 2.5.2 Delta-function initial profile; 2.5.3 A general class of solutions of the Korteweg-de Vries equation; 2.5.4 The Gel'fand-Levitan-Marchenko integral equation; 2.6 Properties of completely integrable equations; 2.6.1 Solitons; 2.6.2 Infinite number of conservation laws; 2.6.3 Compatibility of linear operators; 2.6.4 Completely integrable Hamiltonian system and action-angle variables; 2.6.5 Bilinear representation; 2.6.6 Backland transformations 
505 8 |a 2.6.7 Painleve property2.6.8 Prolongation structure; 3 General Inverse Scattering in One Dimension; 3.1 Inverse scattering and Riemann-Hilbert problems for N x N matrix systems; 3.1.1 The direct and inverse scattering problems: 2nd order case; 3.1.2 The direct and inverse scattering problems: iVth order case; 3.1.3 The time dependence; 3.1.4 Hamiltonian system and action-angle variables for the nonlinear Schrodinger equation; 3.1.5 Riemann-Hilbert problems for iVth order Sturm-Liouville scattering problems; 3.2 Riemann-Hilbert problems for discrete scattering problems 
505 8 |a 3.2.1 Differential-difference equations: discrete Schrodinger scattering problem3.2.2 Differential-difference equations: discrete 2 x 2 scattering problem; 3.2.3 Partial-difference equations; 3.3 Homoclinic structure and numerically induced chaos for the nonlinear Schrodinger equation; 3.3.1 Introduction; 3.3.2 A linearized stability analysis; 3.3.3 Hirota's method for the single homoclinic orbit; 3.3.4 Combination homoclinic orbits; 3.3.5 Numerical homoclinic instability; 3.3.6 Duffmg's equations and Mel'nikov analysis; 3.4 Cellular Automata 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Solitons. 
650 0 |a Evolution equations, Nonlinear. 
650 0 |a Inverse scattering transform. 
650 6 |a Solitons. 
650 6 |a Équations d'évolution non linéaires. 
650 6 |a Problème inverse de diffusion. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Evolution equations, Nonlinear  |2 fast 
650 7 |a Inverse scattering transform  |2 fast 
650 7 |a Solitons  |2 fast 
700 1 |a Clark, P. A. 
776 0 8 |i Print version:  |a Ablowitz, Mark J.  |t Solitons, nonlinear evolution equations and inverse scattering.  |d Cambridge ; New York : Cambridge University Press, 1991  |z 9780521387309  |w (DLC) 92159759  |w (OCoLC)70410450 
830 0 |a London Mathematical Society lecture note series ;  |v 149. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551359  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10446072 
938 |a EBSCOhost  |b EBSC  |n 551359 
938 |a YBP Library Services  |b YANK  |n 10374339 
994 |a 92  |b IZTAP