Cargando…

Set theory /

This is a classic introduction to set theory in three parts. The first part gives a general introduction to set theory, suitable for undergraduates; complete proofs are given and no background in logic is required. Exercises are included, and the more difficult ones are supplied with hints. An appen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hajnal, A.
Otros Autores: Hamburg, P.
Formato: Electrónico eBook
Idioma:Inglés
Hungarian
Publicado: Cambridge ; New York : Cambridge University Press, 1999.
Edición:1st English ed.
Colección:London Mathematical Society student texts ; 48.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn831676599
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130325s1999 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d UAB  |d OCLCQ  |d VTS  |d STF  |d M8D  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 708565119 
020 |a 9781107362550  |q (electronic bk.) 
020 |a 1107362555  |q (electronic bk.) 
020 |a 9780511623561  |q (e-book) 
020 |a 0511623569  |q (e-book) 
020 |z 0521593441 
020 |z 9780521593441 
020 |z 052159667X 
020 |z 9780521596671 
029 1 |a DEBBG  |b BV043060393 
029 1 |a DEBSZ  |b 446504637 
035 |a (OCoLC)831676599  |z (OCoLC)708565119 
041 1 |a eng  |h hun 
050 4 |a QA248  |b .H23513 1999eb 
072 7 |a MAT  |x 028000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 22 
049 |a UAMI 
100 1 |a Hajnal, A. 
240 1 0 |a Halmazeimélet.  |l English 
245 1 0 |a Set theory /  |c András Hajnal and Peter Hamburger ; translated by Attila Máté. 
250 |a 1st English ed. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1999. 
300 |a 1 online resource (viii, 316 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 48 
500 |a Originally published in Hungarian as Halmazeimélet, 1983. 
504 |a Includes bibliographical references (pages 295-296 and indexes. 
546 |a Translated into English. 
505 0 0 |t Definition of equivalence. The concept of cardinality. The Axiom of Choice --  |t Countable cardinal, continuum cardinal --  |t Comparison of cardinals --  |t Operations with sets and cardinals --  |t Ordered sets. Order types. Ordinals --  |t Properties of wellordered sets. Good sets. The ordinal operation --  |t Transfinite induction and recursion. Some consequences of the Axiom of Choice, the Wellordering Theorem --  |t Definition of the cardinality operation. Properties of cardinalities. The cofinality operation --  |t Properties of the power operation --  |t Hints for solving problems marked with * in Part I --  |t An axiomatic development of set theory --  |t The Zermelo-Fraenkel axiom system of set theory --  |t Definition of concepts; extension of the language --  |t A sketch of the development. Metatheorems --  |t A sketch of the development. Definitions of simple operations and properties (continued) --  |t A sketch of the development. Basic theorems, the introduction of [omega] and R (continued) --  |t The ZFC axiom system. A weakening of the Axiom of Choice. Remarks on the theorems of Sections 2-7 --  |t The role of the Axiom of Regularity --  |t Proofs of relative consistency. The method of interpretation --  |t Proofs of relative consistency. The method of models --  |t Topics in combinatorial set theory --  |t Stationary sets --  |t [Delta]-systems --  |t Ramsey's Theorem and its generalizations. Partition calculus --  |t Inaccessible cardinals. Mahlo cardinals --  |t Measurable cardinals --  |t Real-valued measurable cardinals, saturated ideals --  |t Weakly compact and Ramsey cardinals --  |t Set mappings. 
588 0 |a Print version record. 
520 |a This is a classic introduction to set theory in three parts. The first part gives a general introduction to set theory, suitable for undergraduates; complete proofs are given and no background in logic is required. Exercises are included, and the more difficult ones are supplied with hints. An appendix to the first part gives a more formal foundation to axiomatic set theory, supplementing the intuitive introduction given in the first part. The final part gives an introduction to modern tools of combinatorial set theory. This part contains enough material for a graduate course of one or two semesters. The subjects discussed include stationary sets, delta systems, partition relations, set mappings, measurable and real-valued measurable cardinals. Two sections give an introduction to modern results on exponentiation of singular cardinals, and certain deeper aspects of the topics are developed in advanced problems. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Set theory. 
650 6 |a Théorie des ensembles. 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a Set theory.  |2 fast  |0 (OCoLC)fst01113587 
650 7 |a TEORIA DOS CONJUNTOS.  |2 larpcal 
700 1 |a Hamburg, P. 
776 0 8 |i Print version:  |a Hajnal, A.  |s Halmazeimélet. English.  |t Set theory.  |b 1st English ed.  |d Cambridge ; New York : Cambridge University Press, 1999  |z 0521593441  |w (DLC) 99026507  |w (OCoLC)41143004 
830 0 |a London Mathematical Society student texts ;  |v 48. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551345  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10443905 
938 |a EBSCOhost  |b EBSC  |n 551345 
938 |a Internet Archive  |b INAR  |n settheory0000hajn 
938 |a YBP Library Services  |b YANK  |n 10374352 
994 |a 92  |b IZTAP