Cargando…

A primer of algebraic D-modules /

The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-soph...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Coutinho, S. C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995.
Colección:London Mathematical Society student texts ; 33.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn831664169
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130325s1995 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d CAMBR  |d IDEBK  |d OL$  |d OCLCQ  |d DEBSZ  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d UAB  |d VTS  |d REC  |d OCLCO  |d STF  |d M8D  |d OCLCO  |d OCLCQ  |d AJS  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 708565302  |a 852197485 
020 |a 9781107362352  |q (electronic bk.) 
020 |a 1107362350  |q (electronic bk.) 
020 |a 9780511623653  |q (electronic bk.) 
020 |a 0511623658  |q (electronic bk.) 
020 |z 0521551196 
020 |z 9780521551199 
020 |z 0521559081 
020 |z 9780521559089 
029 1 |a DEBBG  |b BV043057161 
029 1 |a DEBSZ  |b 44644782X 
035 |a (OCoLC)831664169  |z (OCoLC)708565302  |z (OCoLC)852197485 
050 4 |a QA614.3  |b .C68 1995eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.4  |2 22 
084 |a 31.29  |2 bcl 
084 |a SK 240  |2 rvk 
084 |a MAT 162f  |2 stub 
049 |a UAMI 
100 1 |a Coutinho, S. C. 
245 1 2 |a A primer of algebraic D-modules /  |c S.C. Coutinho. 
260 |a Cambridge [England] ;  |a New York, NY, USA :  |b Cambridge University Press,  |c 1995. 
300 |a 1 online resource (xii, 207 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 33 
504 |a Includes bibliographical references (pages 197-202) and index. 
588 0 |a Print version record. 
520 |a The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations 
505 8 |a 4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises 
505 8 |a Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products. 
505 8 |a 1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images 
505 8 |a 2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a D-modules. 
650 6 |a D-modules. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a D-modules.  |2 fast  |0 (OCoLC)fst00886490 
650 7 |a D-Modul  |2 gnd 
650 7 |a Weyl-Algebra  |2 gnd 
650 7 |a Anneaux (algèbre)  |2 ram 
650 7 |a D-modules, Théorie des.  |2 ram 
776 0 8 |i Print version:  |a Coutinho, S.C.  |t Primer of algebraic D-modules.  |d Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995  |z 0521551196  |w (DLC) 95006628  |w (OCoLC)32168267 
830 0 |a London Mathematical Society student texts ;  |v 33. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551346  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10443981 
938 |a EBSCOhost  |b EBSC  |n 551346 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25158929 
938 |a YBP Library Services  |b YANK  |n 10374349 
994 |a 92  |b IZTAP