|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn831664169 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130325s1995 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d CAMBR
|d IDEBK
|d OL$
|d OCLCQ
|d DEBSZ
|d OCLCF
|d YDXCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d OCLCO
|d UAB
|d VTS
|d REC
|d OCLCO
|d STF
|d M8D
|d OCLCO
|d OCLCQ
|d AJS
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 708565302
|a 852197485
|
020 |
|
|
|a 9781107362352
|q (electronic bk.)
|
020 |
|
|
|a 1107362350
|q (electronic bk.)
|
020 |
|
|
|a 9780511623653
|q (electronic bk.)
|
020 |
|
|
|a 0511623658
|q (electronic bk.)
|
020 |
|
|
|z 0521551196
|
020 |
|
|
|z 9780521551199
|
020 |
|
|
|z 0521559081
|
020 |
|
|
|z 9780521559089
|
029 |
1 |
|
|a DEBBG
|b BV043057161
|
029 |
1 |
|
|a DEBSZ
|b 44644782X
|
035 |
|
|
|a (OCoLC)831664169
|z (OCoLC)708565302
|z (OCoLC)852197485
|
050 |
|
4 |
|a QA614.3
|b .C68 1995eb
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.4
|2 22
|
084 |
|
|
|a 31.29
|2 bcl
|
084 |
|
|
|a SK 240
|2 rvk
|
084 |
|
|
|a MAT 162f
|2 stub
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Coutinho, S. C.
|
245 |
1 |
2 |
|a A primer of algebraic D-modules /
|c S.C. Coutinho.
|
260 |
|
|
|a Cambridge [England] ;
|a New York, NY, USA :
|b Cambridge University Press,
|c 1995.
|
300 |
|
|
|a 1 online resource (xii, 207 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society student texts ;
|v 33
|
504 |
|
|
|a Includes bibliographical references (pages 197-202) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
|
505 |
0 |
|
|a Cover; Title; Copyright; Dedication; Contents; Preface; Introduction; 1. The Weyl algebra; 2. Algebraic D-modules; 3. The book: an overview; 4. Pre-requisites; Chapter 1. The Weyl algebra; 1. Definition; 2. Canonical form; 3. Generators and relations; 4. Exercises; Chapter 2. Ideal structure of the Weyl algebra.; 1. The degree of an operator; 2. Ideal structure; 3. Positive characteristic; 4. Exercises; Chapter 3. Rings of differential operators.; 1. Definitions; 2. The Weyl algebra; 3. Exercises; Chapter 4. Jacobian Conjecture.; 1. Polynomial maps; 2. Jacobian conjecture; 3. Derivations
|
505 |
8 |
|
|a 4. Automorphisms5. Exercises; Chapter 5. Modules over the Weyl algebra.; 1. The polynomial ring; 2. Twisting; 3. Holomorphic functions; 4. Exercises; Chapter 6. Differential equations.; 1. The D-module of an equation; 2. Direct limit of modules; 3. Microfunctions; 4. Exercises; Chapter 7. Graded and filtered modules.; 1. Graded rings; 2. Filtered rings; 3. Associated graded algebra; 4. Filtered modules; 5. Induced filtration; 6. Exercises; Chapter 8. Noetherian rings and modules.; 1. Noetherian modules; 2. Noetherian rings; 3. Good filtration; 4. Exercises
|
505 |
8 |
|
|a Chapter 9. Dimension and multiplicity. 1. The Hilbert polynomial; 2. Dimension and multiplicity; 3. Basic properties; 4. Bernstein's inequality; 5. Exercises; Chapter 10. Holonomic modules.; 1. Definition and examples; 2. Basic properties; 3. Further examples; 4. Exercises; Chapter 11. Characteristic varieties.; 1. The characteristic variety; 2. Symplectic geometry; 3. Non-holonomic irreducible modules; 4. Exercises; Chapter 12. Tensor products.; 1. Bimodules; 2. Tensor products; 3. The universal property; 4. Basic properties; 5. Localization; 6. Exercises; Chapter 13. External products.
|
505 |
8 |
|
|a 1. External products of algebras2. External products of modules; 3. Graduations and filtrations; 4. Dimensions and multiplicities; 5. Exercises; Chapter 14. Inverse Image.; 1. Change of rings; 2. Inverse images; 3. Projections; 4. Exercises; Chapter 15. Embeddings.; 1. The standard embedding; 2. Composition; 3. Embeddings revisited; 4. Exercises; Chapter 16. Direct images; 1. Right modules; 2. Transposition; 3. Left modules; 4. Exercises; Chapter 17. Kashiwara's theorem; 1. Embeddings; 2. Kashiwara's theorem; 3. Exercises; Chapter 18. Preservation of holonomy.; 1. Inverse images
|
505 |
8 |
|
|a 2. Direct images3. Categories and functors; 4. Exercises; Chapter 19. Stability of differential equations.; 1. Asymptotic stability; 2. Global upper bound; 3. Global stability on the plane; 4. Exercises; Chapter 20. Automatic proof of identities.; 1. Holonomic functions; 2. Hyperexponential functions; 3. The method; 4. Exercises; Coda; Appendix 1. Defining the action of a module using generators; Appendix 2. Local inversion theorem; References; Index
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a D-modules.
|
650 |
|
6 |
|a D-modules.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a D-modules.
|2 fast
|0 (OCoLC)fst00886490
|
650 |
|
7 |
|a D-Modul
|2 gnd
|
650 |
|
7 |
|a Weyl-Algebra
|2 gnd
|
650 |
|
7 |
|a Anneaux (algèbre)
|2 ram
|
650 |
|
7 |
|a D-modules, Théorie des.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Coutinho, S.C.
|t Primer of algebraic D-modules.
|d Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1995
|z 0521551196
|w (DLC) 95006628
|w (OCoLC)32168267
|
830 |
|
0 |
|a London Mathematical Society student texts ;
|v 33.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551346
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10443981
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 551346
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25158929
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10374349
|
994 |
|
|
|a 92
|b IZTAP
|