Cargando…

Path Integrals for Stochastic Processes : an Introduction.

This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920's, corresponding to a sum over random trajectories, anticipating by two decades Feynman's f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wio, Horacio S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Pub. Co., 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn830162352
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 130316s2013 si ob 001 0 eng d
010 |a  2012554952 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d DEBSZ  |d YDXCP  |d OCLCQ  |d CDX  |d IDEBK  |d STF  |d E7B  |d CUS  |d OCLCF  |d CUS  |d GGVRL  |d OCLCQ  |d NKT  |d LOA  |d OCLCQ  |d JBG  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d UIU  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d VLY  |d UKCRE  |d OCLCO  |d OCLCQ 
019 |a 830085788  |a 897557790  |a 960205701  |a 961656539  |a 962651015  |a 966549022  |a 988463794  |a 991923362  |a 1037744240  |a 1038641291  |a 1045497280  |a 1055393817  |a 1059079960  |a 1066447266  |a 1081253209  |a 1086446192  |a 1153537402  |a 1162413453  |a 1228531827  |a 1237220416 
020 |a 9789814449045  |q (electronic bk.) 
020 |a 9814449040  |q (electronic bk.) 
020 |a 9814447994 
020 |a 9789814447997 
020 |a 9781299281356 
020 |a 1299281354 
029 1 |a AU@  |b 000054192884 
029 1 |a CHNEW  |b 000607935 
029 1 |a DEBBG  |b BV043034133 
029 1 |a DEBBG  |b BV044173995 
029 1 |a DEBSZ  |b 380381435 
029 1 |a DEBSZ  |b 421272430 
029 1 |a DEBSZ  |b 454904436 
029 1 |a NZ1  |b 15912654 
029 1 |a AU@  |b 000054754203 
035 |a (OCoLC)830162352  |z (OCoLC)830085788  |z (OCoLC)897557790  |z (OCoLC)960205701  |z (OCoLC)961656539  |z (OCoLC)962651015  |z (OCoLC)966549022  |z (OCoLC)988463794  |z (OCoLC)991923362  |z (OCoLC)1037744240  |z (OCoLC)1038641291  |z (OCoLC)1045497280  |z (OCoLC)1055393817  |z (OCoLC)1059079960  |z (OCoLC)1066447266  |z (OCoLC)1081253209  |z (OCoLC)1086446192  |z (OCoLC)1153537402  |z (OCoLC)1162413453  |z (OCoLC)1228531827  |z (OCoLC)1237220416 
037 |a 459385  |b MIL 
050 4 |a QA274.22 
072 7 |a SCI  |x 040000  |2 bisacsh 
082 0 4 |a 530.1595 
049 |a UAMI 
100 1 |a Wio, Horacio S. 
245 1 0 |a Path Integrals for Stochastic Processes :  |b an Introduction. 
260 |a Singapore :  |b World Scientific Pub. Co.,  |c 2013. 
300 |a 1 online resource (159 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 149-155) and index. 
505 0 |a 1. Stochastic processes: a short tour. 1.1. Stochastic process. 1.2. Master equation. 1.3. Langevin equation. 1.4. Fokker-Planck equation. 1.5. Relation between Langevin and Fokker-Planck equations -- 2. The path integral for a Markov stochastic process. 2.1. The Wiener integral. 2.2. The path integral for a general Markov process. 2.3. The recovering of the Fokker-Planck equation. 2.4. Path integrals in phase space. 2.5. Generating functional and correlations -- 3. Generalized path expansion scheme I. 3.1. Expansion around the reference path. 3.2. Fluctuations around the reference path -- 4. Space-time transformation I. 4.1. Introduction. 4.2. Simple example. 4.3. Fluctuation theorems from non-equilibrium Onsager-Machlup theory. 4.4. Brownian particle in a time-dependent harmonic potential. 4.5. Work distribution function -- 5. Generalized path expansion scheme II. 5.1. Path expansion: further aspects. 5.2. Examples -- 6. Space-time transformation II. 6.1. Introduction. 6.2. The diffusion propagator. 6.3. Flow through the infinite barrier. 6.4. Asymptotic probability distribution. 6.5. General localization conditions. 6.6. A family of analytical solutions. 6.7. Stochastic resonance in a monostable non-harmonic time-dependent potential -- 7. Non-Markov processes: colored noise case. 7.1. Introduction. 7.2. Ornstein-Uhlenbeck case. 7.3. The stationary distribution. 7.4. The interpolating scheme -- 8. Non-Markov processes: Non-Gaussian case. 8.1. Introduction. 8.2. Non-Gaussian process [symbol]. 8.3. Effective Markov approximation -- 9. Non-Markov processes: nonlinear cases. 9.1. Introduction. 9.2. Nonlinear noise. 9.3. Kramers problem -- 10. Fractional diffusion process. 10.1. Short introduction to fractional Brownian motion. 10.2. Fractional Brownian motion: a path integral approach. 10.3. Fractional Brownian motion: the kinetic equation. 10.4. Fractional Brownian motion: some extensions. 10.5. Fractional Lévy motion: path integral approach. 10.6. Fractional Lévy motion: final comments -- 11. Feynman-Kac Formula, the influence functional. 11.1. Feynman-Kac formula. 11.2. Influence functional: elimination of irrelevant variables. 11.3. Kramers problem -- 12. Other diffusion-like problems. 12.1. Diffusion in shear flows. 12.2. Diffusion controlled reactions -- 13. What was left out. 
520 |a This book provides an introductory albeit solid presentation of path integration techniques as applied to the field of stochastic processes. The subject began with the work of Wiener during the 1920's, corresponding to a sum over random trajectories, anticipating by two decades Feynman's famous work on the path integral representation of quantum mechanics. However, the true trigger for the application of these techniques within nonequilibrium statistical mechanics and stochastic processes was the work of Onsager and Machlup in the early 1950's. The last quarter of the 20th century has witnessed a growing interest in this technique and its application in several branches of research, even outside physics (for instance, in economy). The aim of this book is to offer a brief but complete presentation of the path integral approach to stochastic processes. It could be used as an advanced textbook for graduate students and even ambitious undergraduates in physics. It describes how to apply these techniques for both Markov and non-Markov processes. The path expansion (or semiclassical approximation) is discussed and adapted to the stochastic context. Also, some examples of nonlinear transformations and some applications are discussed, as well as examples of rather unusual applications. An extensive bibliography is included. The book is detailed enough to capture the interest of the curious reader, and complete enough to provide a solid background to explore the research literature and start exploiting the learned material in real situations. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic integrals. 
650 0 |a Function spaces. 
650 6 |a Intégrales stochastiques. 
650 6 |a Espaces fonctionnels. 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a Function spaces.  |2 fast  |0 (OCoLC)fst00936058 
650 7 |a Stochastic integrals.  |2 fast  |0 (OCoLC)fst01133512 
776 0 8 |i Print version:  |a Wio, Horacio S.  |t Path Integrals for Stochastic Processes : An Introduction.  |d Singapore : World Scientific Publishing Company, ©2013  |z 9789814447997 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=545486  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25007826 
938 |a Coutts Information Services  |b COUT  |n 25021104 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1143332 
938 |a ebrary  |b EBRY  |n ebr10674337 
938 |a EBSCOhost  |b EBSC  |n 545486 
938 |a Cengage Learning  |b GVRL  |n GVRL8RGQ 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25021104 
938 |a YBP Library Services  |b YANK  |n 10258488 
994 |a 92  |b IZTAP