Cargando…

Modeling Volcanic Processes : the Physics and Mathematics of Volcanism.

An advanced textbook and reference resource examining the physics of volcanic behavior and the state of the art in modeling volcanic processes.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fagents, Sarah A.
Otros Autores: Gregg, Tracy K. P., Lopes, Rosaly M. C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Modeling Volcanic Processes; Chapter 1 Introduction; Scope of this book; Content; Acknowledgments; References; Chapter 2 Magma chamber dynamics and thermodynamics; Overview; 2.1 Introduction; 2.2 Heat transfer and magmatic intrusions; 2.2.1 Multiple intrusions and crustal melting efficiency; 2.3 Crustal stresses and magma chambers; 2.4 Magma chamber convection; 2.4.1 Rayleigh-Bénard convection; 2.4.2 Multiphase convection; 2.4.3 Convection and mixing; 2.5 Future directions; 2.6 Summary; 2.7 Notation; Acknowledgments; References; Chapter 3 The dynamics of dike propagation; Overview.
  • 3.1 Introduction3.2 Field observations; 3.2.1 Dike geometry as seen in the field; 3.2.2 Geophysically observed dike injection events; 3.3 Theoretical considerations; 3.3.1 Constant magma and host properties; 3.3.2 Variable magma and host properties; 3.3.3 Questions to resolve: an appeal to experiments; 3.4 Experimental investigations; 3.4.1 Experimental methods; 3.4.2 Steady propagation regime; 3.4.3 Propagation (and arrest) of a constant volume fissure; 3.4.4 Propagation under conditions of variable properties; 3.5 Discussion and perspectives; 3.6 Summary; 3.7 Notation; References.
  • Chapter 4 Dynamics of magma ascent in the volcanic conduitOverview; 4.1 Introduction; 4.1.1 Getting magma to the surface; 4.1.2 The volcanic conduit; 4.2 Volatiles; 4.2.1 Solubility; 4.2.2 Diffusivity; 4.2.3 Pre-eruptive volatile content of magmas; Water; Carbon dioxide; Sulfur; Chlorine and Fluorine; 4.3 Bubbles; 4.3.1 Nucleation; 4.3.2 Growth; Modeling of bubble growth; Viscous limit; Diffusive limit; Solubility limit; 4.3.3 Coalescence; 4.3.4 Breakup; 4.3.5 Bubble mobility; 4.3.6 Bubbles and pressure loss; 4.3.7 Permeable outgassing; 4.4 Crystal nucleation and growth; 4.5 Magma rheology.
  • 4.5.1 The effect of dissolved volatiles and temperature4.5.2 The effect of deformation rate; 4.5.3 The effect of crystals; 4.5.4 The effect of bubbles; 4.6 Magma fragmentation; 4.7 Modeling of magma ascent; 4.7.1 Steady homogeneous flow in one dimension; 4.7.2 Steady separated flow in one dimension; 4.7.3 Two-dimensional flow; 4.7.4 Coupling the conduit and the magma chamber; 4.8 What conduit models have taught us; 4.8.1 Subplinian and plinian eruptions; 4.8.2 Strombolian eruptions; 4.8.3 Hawaiian eruptions; 4.8.4 Effusive eruptions; 4.9 Summary; 4.10 Notation; Acknowledgments; References.
  • Chapter 5 Lava flowsOverview; 5.1 Lava flows and lava flow models; 5.2 Lava flow dynamics: fundamental principles and definitions; 5.2.1 Lava flow dynamics: velocity treatments; 5.2.2 Controls on viscosity and yield strength; Viscosity: influence of composition and temperature; Viscosity: influence of crystals and bubbles; Yield strength; 5.3 Lava flow heat budget and cooling; 5.3.1 Crystallinity; 5.4 Type II modeling; 5.4.1 Flow paths; DEM quality; 5.4.2 Type IIa models: volume-limited flow emplacement; 5.4.3 Type IIb models: cooling-limited flow emplacement.