Cargando…

Earth dynamics : deformations and oscillations of the rotating Earth /

A rigorous overview of the solid Earth's dynamical behaviour, explaining the theory with methodology and online freeware for numerical implementation.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smylie, D. E. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • EARTH DYNAMICS Deformations and Oscillations of the Rotating Earth; Contents; Preface and acknowledgments; The book website www.cambridge.org/smylie; 1 Introduction and theoretical background; 1.1 Scalar, vector and tensor analysis; 1.1.1 Scalars; 1.1.2 Vectors; 1.1.3 Vectors and co-ordinate transformations; 1.1.4 Tensors; 1.1.5 Metric tensors and elements of arc, surface and volume; 1.1.6 The cross product and differential operators; 1.1.7 Orthogonal co-ordinates; 1.1.8 Pseudo-tensors; 1.1.9 Cartesian tensors; 1.2 Separation of vector fields; 1.3 Vector spherical harmonics.
  • 1.4 Elasticity theory1.4.1 Analysis of stress; 1.4.2 Conditions of equilibrium; 1.4.3 Analysis of deformation; 1.4.4 Hooke's law and the Navier equation; 1.4.5 Solutions of the Navier equation; 1.4.6 Kelvin's problem; 1.4.7 The Papkovich-Neuber solution; 1.4.8 The Galerkin vector; 1.4.9 The Boussinesq problem; 1.4.10 Cerruti's problem; 1.4.11 The Mindlin problems; 1.5 Linear algebraic systems; 1.6 Interpolation and approximation; 1.6.1 Natural splines; 1.6.2 Local Hermite splines; 1.6.3 Even or odd local basis functions; 2 Time sequence and spectral analysis; 2.1 Time domain analysis.
  • 2.1.1 Classification of time sequences2.1.2 Convolution and the z-transform; 2.1.3 Expected value, auto- and crosscorrelation; 2.1.4 White noise and Wold decomposition; 2.1.5 Properties of wavelets; 2.2 Linear optimum Wiener filters; 2.2.1 Prediction and prediction error filters; 2.2.2 Predictive deconvolution; 2.2.3 The Levinson algorithm; 2.3 Frequency domain analysis; 2.3.1 The discrete Fourier transform; 2.3.2 The DFT and the z-transform; 2.3.3 The fast Fourier transform; 2.3.4 Generalisation of the FFT; 2.3.5 The DFT for unequally spaced samples; 2.3.6 Singular value decomposition.
  • 2.4 Fourier series and transforms2.4.1 Convolution theorems; 2.4.2 The effect of finite record length; 2.4.3 The effects of discrete sampling; 2.5 Power spectral density estimation; 2.5.1 Autocorrelation and spectral density; 2.5.2 Multiple discrete segment estimate; 2.5.3 Overlapping segment analysis; 2.5.4 The product spectrum; 2.6 Maximum entropy spectral analysis; 2.6.1 Information and entropy; 2.6.2 The maximum entropy spectrum; 2.6.3 The Burg algorithm; 3 Earth deformations; 3.1 Equilibrium equations; 3.2 The reciprocal theorem of Betti; 3.3 Radial equations: spheroidal and torsional.
  • 3.4 Dynamical equations3.5 Solutions near the geocentre; 3.6 Numerical integration of the radial equations; 3.7 Fundamental, regular solutions in the inner core; 4 Earth's rotation: observations and theory; 4.1 Reference frames; 4.2 Polar motion and wobble; 4.2.1 The VLBI pole path; 4.2.2 Spectral analysis of the VLBI pole path; 4.2.3 Interpolation of the VLBI pole path; 4.2.4 Maximum entropy spectral analysis of the VLBI pole path; 4.3 The dynamics of polar motion and wobble; 4.3.1 Response of the Earth to changes in the centrifugal force; 4.3.2 Free and forced polar motion and dissipation; 4.3.3 Relating theory to observations.