Cargando…

Least squares data fitting with applications /

"As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hansen, Per Christian
Otros Autores: Pereyra, V. (Victor), Scherer, Godela
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Baltimore, Md. : Johns Hopkins University Press, 2013.
Colección:Book collections on Project MUSE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn828720556
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 130228s2013 mdua ob 001 0 eng d
010 |z  2012942511 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OCLCO  |d E7B  |d N$T  |d P@U  |d OCLCF  |d LRU  |d OCLCQ  |d N15  |d COO  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d LOA  |d OCLCQ  |d K6U  |d OCLCQ  |d LVT  |d AGLDB  |d OCLCQ  |d PIFFA  |d FVL  |d OTZ  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d ICG  |d VT2  |d REC  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d OCLCQ  |d ESU  |d OCLCO  |d AJS  |d UKAHL  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 859687133  |a 923196278  |a 960203458  |a 961629819  |a 962629113  |a 969531077  |a 972014171  |a 992101404  |a 994955465  |a 1005099407  |a 1037935850  |a 1038668345  |a 1062989271  |a 1162013862  |a 1224911451  |a 1228574309 
020 |a 1421408589  |q (electronic bk.) 
020 |a 9781421408583  |q (electronic bk.) 
020 |z 1421407868 
020 |z 9781421407869 
029 1 |a AU@  |b 000059887528 
029 1 |a AU@  |b 000062379662 
029 1 |a CHNEW  |b 000603486 
029 1 |a DEBBG  |b BV043087792 
029 1 |a DEBBG  |b BV044101896 
029 1 |a DEBSZ  |b 421248343 
029 1 |a DEBSZ  |b 449715264 
029 1 |a AU@  |b 000060074259 
035 |a (OCoLC)828720556  |z (OCoLC)859687133  |z (OCoLC)923196278  |z (OCoLC)960203458  |z (OCoLC)961629819  |z (OCoLC)962629113  |z (OCoLC)969531077  |z (OCoLC)972014171  |z (OCoLC)992101404  |z (OCoLC)994955465  |z (OCoLC)1005099407  |z (OCoLC)1037935850  |z (OCoLC)1038668345  |z (OCoLC)1062989271  |z (OCoLC)1162013862  |z (OCoLC)1224911451  |z (OCoLC)1228574309 
050 4 |a QA275  |b .H26 2013 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.42  |2 23 
049 |a UAMI 
100 1 |a Hansen, Per Christian. 
245 1 0 |a Least squares data fitting with applications /  |c Per Christian Hansen, Víctor Pereyra, Godela Scherer. 
260 |a Baltimore, Md. :  |b Johns Hopkins University Press,  |c 2013. 
300 |a 1 online resource (xv, 305 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references and index. 
520 |a "As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues. In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems."--Publisher's website. 
588 0 |a Print version record. 
505 0 |a Cover -- Contents -- Preface -- Symbols and Acronyms -- 1 The Linear Data Fitting Problem -- 1.1 Parameter estimation, data approximation -- 1.2 Formulation of the data fitting problem -- 1.3 Maximum likelihood estimation -- 1.4 The residuals and their properties -- 1.5 Robust regression -- 2 The Linear Least Squares Problem -- 2.1 Linear least squares problem formulation -- 2.2 The QR factorization and its role -- 2.3 Permuted QR factorization -- 3 Analysis of Least Squares Problems -- 3.1 The pseudoinverse -- 3.2 The singular value decomposition 
505 8 |a 3.3 Generalized singular value decomposition3.4 Condition number and column scaling -- 3.5 Perturbation analysis -- 4 Direct Methods for Full-Rank Problems -- 4.1 Normal equations -- 4.2 LU factorization -- 4.3 QR factorization -- 4.4 Modifying least squares problems -- 4.5 Iterative refinement -- 4.6 Stability and condition number estimation -- 4.7 Comparison of the methods -- 5 Direct Methods for Rank-Deficient Problems -- 5.1 Numerical rank -- 5.2 Peters-Wilkinson LU factorization -- 5.3 QR factorization with column permutations 
505 8 |a 5.4 UTV and VSV decompositions5.5 Bidiagonalization -- 5.6 SVD computations -- 6 Methods for Large-Scale Problems -- 6.1 Iterative versus direct methods -- 6.2 Classical stationary methods -- 6.3 Non-stationary methods, Krylov methods -- 6.4 Practicalities: preconditioning and stopping criteria -- 6.5 Block methods -- 7 Additional Topics in Least Squares -- 7.1 Constrained linear least squares problems -- 7.2 Missing data problems -- 7.3 Total least squares (TLS) -- 7.4 Convex optimization -- 7.5 Compressed sensing -- 8 Nonlinear Least Squares Problems 
505 8 |a 8.1 Introduction8.2 Unconstrained problems -- 8.3 Optimality conditions for constrained problems -- 8.4 Separable nonlinear least squares problems -- 8.5 Multiobjective optimization -- 9 Algorithms for Solving Nonlinear LSQ Problems -- 9.1 Newtonâ€?s method -- 9.2 The Gauss-Newton method -- 9.3 The Levenberg-Marquardt method -- 9.4 Additional considerations and software -- 9.5 Iteratively reweighted LSQ algorithms for robust data fitting problems -- 9.6 Variable projection algorithm -- 9.7 Block methods for large-scale problems -- 10 Ill-Conditioned Problems 
505 8 |a 10.1 Characterization10.2 Regularization methods -- 10.3 Parameter selection techniques -- 10.4 Extensions of Tikhonov regularization -- 10.5 Ill-conditioned NLLSQ problems -- 11 Linear Least Squares Applications -- 11.1 Splines in approximation -- 11.2 Global temperatures data fitting -- 11.3 Geological surface modeling -- 12 Nonlinear Least Squares Applications -- 12.1 Neural networks training -- 12.2 Response surfaces, surrogates or proxies -- 12.3 Optimal design of a supersonic aircraft -- 12.4 NMR spectroscopy -- 12.5 Piezoelectric crystal identification 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Least squares. 
650 0 |a Mathematical models. 
650 6 |a Modèles mathématiques. 
650 7 |a mathematical models.  |2 aat 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Least squares  |2 fast 
650 7 |a Mathematical models  |2 fast 
650 7 |a Statistik  |2 gnd 
650 7 |a Methode der kleinsten Quadrate  |2 gnd 
650 7 |a Modeles mathematiques.  |2 ram 
650 7 |a Moindres carres  |x Informatique.  |2 ram 
700 1 |a Pereyra, V.  |q (Victor) 
700 1 |a Scherer, Godela. 
776 0 8 |i Print version:  |a Hansen, Per Christian.  |t Least squares data fitting with applications.  |d Baltimore, Md. : Johns Hopkins University Press, ©2013  |z 1421407868  |w (OCoLC)820530760 
830 0 |a Book collections on Project MUSE. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=601157  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35310014 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3318664 
938 |a ebrary  |b EBRY  |n ebr10643245 
938 |a EBSCOhost  |b EBSC  |n 601157 
938 |a Project MUSE  |b MUSE  |n muse25392 
938 |a YBP Library Services  |b YANK  |n 9971829 
994 |a 92  |b IZTAP