Cargando…

Group theory and general relativity : representations of the Lorentz group and their applications to the gravitational field /

This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carmeli, Moshe, 1933-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2000.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn827949108
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130218r20001977si ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d I9W  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d VTS  |d REC  |d OCLCO  |d STF  |d AU@  |d OCLCO  |d M8D  |d OCLCA  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 854974047 
020 |a 9781848160187  |q (electronic bk.) 
020 |a 1848160186  |q (electronic bk.) 
020 |z 1860942342 
020 |z 9781860942341 
020 |z 0070099863 
020 |z 9780070099869 
029 1 |a DEBBG  |b BV043154815 
029 1 |a DEBSZ  |b 391775790 
029 1 |a DEBSZ  |b 421294116 
029 1 |a GBVCP  |b 80427388X 
035 |a (OCoLC)827949108  |z (OCoLC)854974047 
050 4 |a QC174.52.L6  |b .C37 2000eb 
072 7 |a SCI  |x 061000  |2 bisacsh 
082 0 4 |a 530.11/01/5122  |2 22 
084 |a SK 950  |2 rvk 
084 |a UH 8300  |2 rvk 
084 |a PHY 012f  |2 stub 
084 |a PHY 042f  |2 stub 
049 |a UAMI 
100 1 |a Carmeli, Moshe,  |d 1933- 
245 1 0 |a Group theory and general relativity :  |b representations of the Lorentz group and their applications to the gravitational field /  |c Moshe Carmeli. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2000. 
300 |a 1 online resource (xviii, 391 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Originally published: New York : McGraw-Hill, ©1977. 
504 |a Includes bibliographical references (pages 343-375) and index. 
588 0 |a Print version record. 
505 0 |a 1. The rotation group. 1.1. The three-dimensional pure rotation group. 1.2. The group SU[symbol]. 1.3. Invariant integral over the groups O[symbol] and SU[symbol]. 1.4. Representations of the groups O[symbol] and SU[symbol]. 1.5. Matrix elements of irreducible representations. 1.6. Differential operators of infinitesimal rotations -- 2. The Lorentz group. 2.1. Infinitesimal Lorentz matrices. 2.2. Infinitesimal Operators. 2.3. Representations of the group L -- 3. Spinor representation of the Lorentz group. 3.1. The group SL(2, C) and the Lorentz group. 3.2. Spinor representation of the group SL(2, C). 3.3. Infinitesimal operators of the spinor representation -- 4. Principal series of representations of SL(2, C). 4.1. Linear spaces of representations. 4.2. The group operators. 4.3. SU[symbol] description of the principal series. 4.4. Comparison with the infinitesimal approach -- 5. Complementary series of representations of SL(2, C). 5.1. Realization of the complementary series. 5.2. SU[symbol] description of the complementary series. 5.3. Operator formulation -- 6. Complete series of representations of SL(2, C). 6.1. Realization of the complete series. 6.2. Complete series and spinors. 6.3. Unitary representations case. 6.4. Harmonic analysis on the group SL(2, C) -- 7. Elements of general relativity theory. 7.1. Riemannian geometry. 7.2. Principle of equivalence. 7.3. Principle of general covariance. 7.4. Gravitational field equations. 7.5. Solutions of Einstein's field equations. 7.6. Experimental tests of general relativity. 7.7. Equations of motion -- 8. Spinors in general relativity. 8.1. Connection between spinors and tensors. 8.2. Maxwell, Weyl and Riemann spinors. 8.3. Classification of Maxwell spinor. 8.4. Classification of Weyl spinor -- 9. SL(2, C) gauge theory of the gravitational field: the Newman-Penrose equations. 9.1. Isotopic spin and gauge fields. 9.2. Lorentz invariance and the gravitational field. 9.3. SL(2, C) invariance and the gravitational field. 9.4. Gravitational field equations -- 10. Analysis of the gravitational field. 10.1. Geometrical interpretation. 10.2. Choice of coordinate system. 10.3. Asymptotic behavior -- 11. Some exact solutions of the gravitational field equations. 11.1. Solutions containing hypersurface orthogonal geodesic rays. 11.2. The NUT-Taub metric. 11.3. Type D vacuum metrics -- 12. The Bondi-Metzner-Sachs group. 12.1. The Bondi-Metzner-Sachs group. 12.2. The structure of the Bondi-Metzner-Sachs Group. 
520 |a This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups - particularly the Lorentz and the SL(2, C) groups - to the theory of general relativity. Each chapter is concluded with a set of problems. The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2, C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book. The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lorentz transformations. 
650 6 |a Transformations de Lorentz. 
650 7 |a SCIENCE  |x Physics  |x Relativity.  |2 bisacsh 
650 7 |a Lorentz transformations.  |2 fast  |0 (OCoLC)fst01002593 
650 7 |a Darstellung  |g Mathematik  |2 gnd 
650 7 |a Anwendung  |2 gnd 
650 7 |a Gravitationsfeld  |2 gnd 
650 7 |a Allgemeine Relativitätstheorie  |2 gnd 
650 7 |a Gruppentheorie  |2 gnd 
650 7 |a Lorentz-Gruppe  |2 gnd 
776 0 8 |i Print version:  |a Carmeli, Moshe, 1933-  |t Group theory and general relativity.  |d Singapore ; River Edge, NJ : World Scientific, ©2000  |z 1860942342  |w (DLC) 00063475  |w (OCoLC)44769003 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516692  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1223514 
938 |a EBSCOhost  |b EBSC  |n 516692 
938 |a YBP Library Services  |b YANK  |n 9965731 
994 |a 92  |b IZTAP