|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn827947324 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130218s2008 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d M6U
|d E7B
|d DEBSZ
|d IDEBK
|d YDXCP
|d STF
|d OCLCQ
|d LOA
|d JBG
|d AGLDB
|d MOR
|d CCO
|d PIFAG
|d MERUC
|d OCLCQ
|d ZCU
|d COO
|d U3W
|d WRM
|d OCLCQ
|d VTS
|d NRAMU
|d ICG
|d INT
|d REC
|d VT2
|d OCLCQ
|d WYU
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d M8D
|d UKAHL
|d OCLCQ
|d UKCRE
|d AJS
|d OCLCQ
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBA8C5420
|2 bnb
|
016 |
7 |
|
|a 014747066
|2 Uk
|
019 |
|
|
|a 696629423
|a 960208206
|a 961668817
|a 962577913
|a 965997229
|a 988445869
|a 991997931
|a 1037712346
|a 1038579558
|a 1045477719
|a 1055385554
|a 1066492044
|a 1081235483
|a 1086537514
|a 1153533492
|a 1228610612
|
020 |
|
|
|a 9781848162143
|q (electronic bk.)
|
020 |
|
|
|a 1848162146
|q (electronic bk.)
|
020 |
|
|
|z 1848162138
|
020 |
|
|
|z 9781848162136
|
029 |
1 |
|
|a DEBBG
|b BV043144147
|
029 |
1 |
|
|a DEBBG
|b BV044175589
|
029 |
1 |
|
|a DEBSZ
|b 384346227
|
029 |
1 |
|
|a DEBSZ
|b 421293586
|
029 |
1 |
|
|a NZ1
|b 15913092
|
035 |
|
|
|a (OCoLC)827947324
|z (OCoLC)696629423
|z (OCoLC)960208206
|z (OCoLC)961668817
|z (OCoLC)962577913
|z (OCoLC)965997229
|z (OCoLC)988445869
|z (OCoLC)991997931
|z (OCoLC)1037712346
|z (OCoLC)1038579558
|z (OCoLC)1045477719
|z (OCoLC)1055385554
|z (OCoLC)1066492044
|z (OCoLC)1081235483
|z (OCoLC)1086537514
|z (OCoLC)1153533492
|z (OCoLC)1228610612
|
050 |
|
4 |
|a QA243
|b .K54 2008eb
|
072 |
|
7 |
|a MAT
|x 022000
|2 bisacsh
|
082 |
0 |
4 |
|a 512.73
|2 22
|
084 |
|
|
|a 31.23
|2 bcl
|
084 |
|
|
|a *11-01
|2 msc
|
084 |
|
|
|a 11-02
|2 msc
|
084 |
|
|
|a 11F11
|2 msc
|
084 |
|
|
|a 11F12
|2 msc
|
084 |
|
|
|a 11F85
|2 msc
|
084 |
|
|
|a 11F03
|2 msc
|
084 |
|
|
|a 11Y99
|2 msc
|
084 |
|
|
|a 30F35
|2 msc
|
084 |
|
|
|a SK 180
|2 rvk
|
084 |
|
|
|a 17,1
|2 ssgn
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kilford, L. J. P.
|q (Lloyd James Peter)
|
245 |
1 |
0 |
|a Modular forms :
|b a classical and computational introduction /
|c L.J.P. Kilford.
|
260 |
|
|
|a London ;
|a Hackensack, NJ :
|b Imperial College Press,
|c ©2008.
|
300 |
|
|
|a 1 online resource (xii, 224 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a "This book is based on notes for lectures given at the Mathematical Institute at the University of Oxford ... 2004-2007"--Introduction
|
504 |
|
|
|a Includes bibliographical references (pages 205-216) and index.
|
520 |
1 |
|
|a "This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of quadratic forms, the proof of Fermat's last theorem and the approximation of pi. It provides a balanced overview of both the theoretical and computational sides of the subject, allowing a variety of courses to be taught from it."--Jacket
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. Historical overview. 1.1. 18th century -- a prologue. 1.2. 19th century -- the classical period. 1.3. Early 20th century -- arithmetic applications. 1.4. Later 20th century -- the link to elliptic curves. 1.5. The 21st century -- the Langlands program -- 2. Introduction to modular forms. 2.1. Modular forms for [symbol]. 2.2. Eisenstein series for the full modular group. 2.3. Computing Fourier expansions of Eisenstein series. 2.4. Congruence subgroups. 2.5. Fundamental domains. 2.6. Modular forms for congruence subgroups. 2.7. Eisenstein series for congruence subgroups. 2.8. Derivatives of modular forms. 2.9. Exercises -- 3. Results on finite-dimensionality. 3.1. Spaces of modular forms are finite-dimensional. 3.2. Explicit formulae for the dimensions of spaces of modular forms. 3.3. The Sturm bound. 3.4. Exercises -- 4. The arithmetic of modular forms. 4.1. Hecke operators. 4.2. Bases of eigenforms. 4.3. Oldforms and newforms. 4.4. Exercises -- 5. Applications of modular forms. 5.1. Modular functions. 5.2. [symbol]-products and [symbol]-quotients. 5.3. The arithmetric of the [symbol]-invariant. 5.4. Applications of the modular function [symbol]. 5.5. Identities of series and products. 5.6. The Ramanujan-Petersson conjecture. 5.7. Elliptic curves and modular forms. 5.8. Theta functions and their applications. 5.9. CM modular forms. 5.10. Lacunary modular forms. 5.11. Exercises -- 6. Modular forms in characteristic [symbol]. 6.1. Classical treatment. 6.2. Galois representations attached to mod [symbol] modular forms. 6.3. Katz modular forms. 6.4. The Sturm bound in characteristic [symbol]. 6.5. Computations with mod [symbol] modular forms. 6.6. Exercises -- 7. Computing with modular forms. 7.1. Historical introduction to computations in number theory. 7.2. MAGMA. 7.3. SAGE. 7.4. PARI and other systems. 7.5. Discussion of computation. 7.6. Exercises.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Forms, Modular
|x Data processing.
|
650 |
|
0 |
|a Algebraic spaces
|x Data processing.
|
650 |
|
6 |
|a Formes modulaires
|x Informatique.
|
650 |
|
6 |
|a Espaces algébriques
|x Informatique.
|
650 |
|
7 |
|a MATHEMATICS
|x Number Theory.
|2 bisacsh
|
776 |
0 |
8 |
|i Print version:
|a Kilford, L.J.P. (Lloyd James Peter).
|t Modular forms.
|d London ; Hackensack, NJ : Imperial College Press, ©2008
|z 1848162138
|w (DLC) 2008301117
|w (OCoLC)234380364
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516755
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24682584
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10688081
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 516755
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis26007339
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9965747
|
994 |
|
|
|a 92
|b IZTAP
|