Inverse methods for atmospheric sounding : theory and practice /
Remote sounding of the atmosphere has proved to be a fruitful method of obtaining global information about the atmospheres of the earth and other planets. This book treats comprehensively the inverse problem of remote sounding, and discusses a wide range of retrieval methods for extracting atmospher...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; [River Edge, N.J.] :
World Scientific,
[©2000]
|
Colección: | Series on atmospheric, oceanic and planetary physics ;
v. 2. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Atmospheric Remote Sounding Methods
- Thermal emission nadir and limb sounders
- Scattered solar radiation
- Absorption of solar radiation
- Active techniques
- Simple Solutions to the Inverse Problem
- Information Aspects
- Formal Statement of the Problem
- State and measurement vectors
- The forward model
- Weighting function matrix
- Vector spaces
- Linear Problems without Measurement Error
- Subspaces of state space
- Identifying the null space and the row space
- Linear Problems with Measurement Error
- Describing experimental error
- The Bayesian approach to inverse problems
- Bayes' theorem
- Example: The Linear problem with Gaussian statistics
- Degrees of Freedom
- How many independent quantities can be measured?
- Degrees of freedom for signal
- Information Content of a Measurement
- The Fisher information matrix
- Shannon information content
- Entropy of a probability density function
- Entropy of a Gaussian distribution
- Information content in the linear Gaussian case
- The Standard Example: Information Content and Degrees of Freedom
- Probability Density Functions and the Maximum Entropy Principle
- Error Analysis and Characterisation
- Characterisation
- The forward model
- The retrieval method
- The transfer function
- Linearisation of the transfer function
- Interpretation
- Retrieval method parameters
- Error Analysis
- Smoothing error
- Forward model parameter error
- Forward model error
- Retrieval noise
- Random and systematic error
- Representing covariances.