Cargando…

Combinatorics of minuscule representations /

"Highest weight modules play a key role in the representation theory of several classes of algebraic objects occurring in Lie theory, including Lie algebras, Lie groups, algebraic groups, Chevalley groups and quantized enveloping algebras. In many of the most important situations, the weights m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Green, R. M., 1971-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:Cambridge tracts in mathematics ; 199.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn827210322
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 130211s2013 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d OCLCO  |d N$T  |d OCLCO  |d YDXCP  |d CAMBR  |d E7B  |d CDX  |d OCLCO  |d DEBSZ  |d IDEBK  |d UMI  |d OCLCO  |d IUL  |d OCLCO  |d OCLCQ  |d OCLCO  |d COO  |d OCLCF  |d OCLCQ  |d BUF  |d UAB  |d OCLCQ  |d CEF  |d OCLCQ  |d WYU  |d UWO  |d OCLCQ  |d LOA  |d K6U  |d OCLCQ  |d VLY  |d UKAHL  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 827279427  |a 828245923  |a 828895508  |a 844068162  |a 852165440  |a 874420418  |a 1067219058  |a 1107761109  |a 1109942597  |a 1117881727  |a 1162003497  |a 1167154233  |a 1241803174  |a 1259146061 
020 |a 9781107308893 
020 |a 1107308895 
020 |a 9781107314443  |q (electronic bk.) 
020 |a 1107314445  |q (electronic bk.) 
020 |a 9781139207003  |q (electronic bk.) 
020 |a 1139207008  |q (electronic bk.) 
020 |a 9781299009066  |q (MyiLibrary) 
020 |a 1299009069  |q (MyiLibrary) 
020 |a 9781107306691  |q (ebook) 
020 |a 1107306698  |q (ebook) 
020 |a 9781107301603 
020 |a 1107301602 
020 |a 1107236525 
020 |a 9781107236523 
020 |a 1107305764 
020 |a 9781107305762 
020 |a 1107312248 
020 |a 9781107312241 
020 |z 9781107026247  |q (hardback) 
020 |z 1107026245  |q (hardback) 
029 1 |a AU@  |b 000052006357 
029 1 |a DEBBG  |b BV041431191 
029 1 |a DEBSZ  |b 38012209X 
029 1 |a DEBSZ  |b 398270201 
029 1 |a GBVCP  |b 785369333 
029 1 |a NLGGC  |b 356800415 
029 1 |a NZ1  |b 15497263 
035 |a (OCoLC)827210322  |z (OCoLC)827279427  |z (OCoLC)828245923  |z (OCoLC)828895508  |z (OCoLC)844068162  |z (OCoLC)852165440  |z (OCoLC)874420418  |z (OCoLC)1067219058  |z (OCoLC)1107761109  |z (OCoLC)1109942597  |z (OCoLC)1117881727  |z (OCoLC)1162003497  |z (OCoLC)1167154233  |z (OCoLC)1241803174  |z (OCoLC)1259146061 
037 |a 432156  |b MIL 
050 4 |a QA252.3  |b .G74 2013eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 511.6 
084 |a MAT002000  |2 bisacsh 
049 |a UAMI 
100 1 |a Green, R. M.,  |d 1971- 
245 1 0 |a Combinatorics of minuscule representations /  |c R.M. Green. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (vii, 320 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Cambridge tracts in mathematics ;  |v 199 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- 1. Classical Lie algebras and Weyl groups -- 2. Heaps over graphs -- 3. Weyl group actions -- 4 Lie theory -- 5. Minuscule representations -- 6. Full heaps over affine Dynkin diagrams -- 7. Chevalley bases -- 8. Combinatorics of Weyl groups -- 9. The 28 bitangents -- 10. Exceptional structures -- 11. Further topics -- Appendix A: Posets, graphs and categories -- Appendix B: Lie theoretic data. 
520 |a "Highest weight modules play a key role in the representation theory of several classes of algebraic objects occurring in Lie theory, including Lie algebras, Lie groups, algebraic groups, Chevalley groups and quantized enveloping algebras. In many of the most important situations, the weights may be regarded as points in Euclidean space, and there is a finite group (called a Weyl group) that acts on the set of weights by linear transformations. The minuscule representations are those for which the Weyl group acts transitively on the weights, and the highest weight of such a representation is called a minuscule weight"--  |c Provided by publisher 
520 |a Uses the combinatorics and representation theory to construct and study important families of Lie algebras and Weyl groups. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Representations of Lie algebras. 
650 0 |a Combinatorial analysis. 
650 6 |a Représentations des algèbres de Lie. 
650 6 |a Analyse combinatoire. 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Combinatorial analysis.  |2 fast  |0 (OCoLC)fst00868961 
650 7 |a Representations of Lie algebras.  |2 fast  |0 (OCoLC)fst01743340 
776 0 8 |i Print version:  |a Green, R.M., 1971-  |t Combinatorics of minuscule representations.  |d Cambridge : Cambridge University Press, 2013  |z 9781107026247  |w (DLC) 2012042963  |w (OCoLC)815364932 
776 0 8 |i Print version:  |a Green, R.M.  |t Combinatorics of Minuscule Representations.  |d Cambridge : Cambridge University Press, ©2013  |z 9781107026247 
830 0 |a Cambridge tracts in mathematics ;  |v 199. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=529645  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34206045 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28319114 
938 |a Coutts Information Services  |b COUT  |n 24667467  |c 50.00 GBP 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1113083 
938 |a ebrary  |b EBRY  |n ebr10649589 
938 |a EBSCOhost  |b EBSC  |n 529645 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24667467 
938 |a YBP Library Services  |b YANK  |n 9988820 
938 |a YBP Library Services  |b YANK  |n 10143773 
938 |a YBP Library Services  |b YANK  |n 10249320 
938 |a YBP Library Services  |b YANK  |n 9995267 
994 |a 92  |b IZTAP