Strings, Gauge Fields, and the Geometry Behind : the Legacy of Maximilian Kreuzer.
This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Po...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific,
2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 3.4. K unneth's theorem4. BRST algebra of gravitational Yang-Mills theories; 4.1. Covariant operations; 4.2. Transformation and exterior derivative; 4.3. Factorization of the algebra; 5. BRST cohomology on ghosts and tensors; 5.1. Invariance under adjoint transformations; 5.2. Lie algebra cohomology; 5.3. Covariant Poincare lemma; 5.4. Chern forms; 6. Chiral anomalies; 6.1. Chern-Simons forms; 6.2. Level decomposition; 6.3. Anomaly candidates; 7. Inclusion of antifields; 7.1. BRST-antifield formalism; 7.2. The antifield dependent BRST cohomology; 7.2.1. First strategy; 7.2.2. Second strategy
- 7.3. Characteristic cohomology and weak covariant Poincar e lemma7.4. Antifield dependent representatives of the BRST cohomology; References; 2. Aspects of supersymmetric BRST cohomology F. Brandt; 1. Introduction; 2. Supersymmetry algebra cohomology (SAC); 3. SUSY ladder equations; 4. Emergence of SAC in supersymmetric BRST cohomology; 5. Descent equations in supersymmetric BRST cohomology; 6. Example in two dimensions; 6.1. Model; 6.2. BRST transformations for the model; 6.3. Trivial pairs and generalized tensors; 6.4. BRST transformations of the T and SUSY algebra
- 6.5. Computation of the supersymmetric BRST cohomology6.6. Solutions to the descent equations; 7. Concluding remarks; Acknowledgment; References; 3. Character expansion for HOMFLY polynomials I. Integrability and di.erence equations A. Mironov, A. Morozov and A. Morozov; 1. Introduction; 2. HOMFLY polynomials as sums of characters; 2.1. Character expansion of HOMFLY polynomials; 2.2. HOMFLY for any knot with 2,3,4 braids in the fundamental representation; 3. Integrability; 3.1. Continuation from t* to arbitrary t; 3.2. Torus knots; 3.3. Non-torus knot/link examples
- 4. Difference equations for torus knots in the case of N = 24.1. Knot polynomial as an average; 4.2. Vk[m; n] from the matrix model; 4.3. Simplest example of the trefoil 31 = [2, 3]; 5. Conclusion; Acknowledgments; References; 4. Bicategories in field theories
- an invitation T. Nikolaus and C. Schweigert; 1. Introduction; 2. Equivariant Hopf algebras from topological field theories; 3. 2-stacks and gerbes; 3.1. 2-stacks; 3.2. Jandl gerbes; 4. RCFT correlators from TFT; 4.1. Surface operators; 4.2. The Kreuzer-Schellekens bihomomorphism