New Trends in Control Theory.
New Trends in Control Theory is a graduate-level monographic textbook. It is a contemporary overview of modern trends in control theory. The introductory chapter gives the geometrical and quantum background, which is a necessary minimum for comprehensive reading of the book. The second chapter gives...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific,
2012.
|
Colección: | Series on Stability, Vibration & Control of Systems: Series A.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Introduction
- 1.1. Geometrical Preliminaries
- 1.1.1. Variational Method of Classical Mechanics
- 1.1.2. Lie Algebra Mechanics
- 1.1.3. Covariant Dynamics Modelling
- 1.1.4. Exterior Differential Forms
- 1.1.5. Hodge Theory Basics
- 1.1.6. Principal G-Bundles, Connections and G
- Snakes
- 1.1.7. Wei-Norman Exponential Method
- 1.2. Quantum Preliminaries
- 1.2.1. Basic Quantum Mechanics
- 1.2.2. Basic Quantum Fields
- 1.2.3. Wigner Function Basics
- 1.2.4. Path Integral Quantization
- 1.2.5. Gauge Path-Integral via Hodge Decomposition
- 2. Basics of Classical Control Theory
- 2.1. Linear Systems and Signals
- 2.1.1. Laplace Transform and Transfer-Function Methods
- 2.1.2. Fourier and Wavelet Transforms for Linear Signals
- 2.1.3. Kalman's Modular State-Space and Filtering Methods
- 2.1.4. Controllability of Linear Systems
- 2.1.5. Stability of Linear Systems
- 2.1.6. Naive Approaches to Nonlinear Systems
- 2.2. Nonlinear Control Systems
- 2.2.1. Command/Control in Human-Robot Interactions
- 2.2.2. Nonlinear Controllability
- 2.2.3. Basics of Geometric Nonlinear Control
- 2.2.4. Lie-Derivative Based Nonlinear Feedback Control
- 2.2.5. Hamiltonian Optimal Control and Maximum Principle
- 2.2.6. Path-Integral Optimal Control of Stochastic Systems
- 2.2.7. Fuzzy-Logic Control
- 3. Euclidean Group in Modern Robotics and Biomechanics
- 3.1. Introduction to Euclidean Group
- 3.1.1. Euclidean Kinematics
- 3.1.2. Basic Dynamics on SE(3)
- 3.1.3. Coupled Newton-Euler Dynamics on SE(3)
- 3.1.4. Introduction to Hamiltonian Biomechanics
- 3.1.5. Library of Basic Hamiltonian Systems
- 3.2. Euclidean Group in Modern Robotics
- 3.2.1. Constructive Controllability for Motion on Lie Groups
- 3.2.2. SE(3)-Group Control Example
- 3.2.3. Examples of SE(3)-Subgroups Control.