Cargando…

Asymptotic Time Decay in Quantum Physics.

Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Marchetti, Domingos H. U.
Otros Autores: Wreszinski, Walter F.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn826853973
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 130124s2012 si ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d OCLCQ  |d MEAUC  |d DEBSZ  |d OCLCQ  |d CDX  |d HKP  |d N$T  |d YDXCP  |d STF  |d IDEBK  |d E7B  |d CUS  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d NJR  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d OL$  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 821767053  |a 822655793  |a 1264756120 
020 |a 9789814383813 
020 |a 9814383813 
020 |z 9814383805 
020 |z 9789814383806 
020 |z 9781283900027 
020 |z 1283900025 
029 1 |a AU@  |b 000054747694 
029 1 |a DEBBG  |b BV043127498 
029 1 |a DEBBG  |b BV044171983 
029 1 |a DEBSZ  |b 379331543 
029 1 |a DEBSZ  |b 421292806 
029 1 |a DEBSZ  |b 454997965 
029 1 |a NZ1  |b 15213007 
029 1 |a AU@  |b 000073140902 
035 |a (OCoLC)826853973  |z (OCoLC)821767053  |z (OCoLC)822655793  |z (OCoLC)1264756120 
037 |a 421252  |b MIL 
050 4 |a QC793.3 .S9 
072 7 |a SCI  |x 051000  |2 bisacsh 
082 0 4 |a 539  |a 539.7 
049 |a UAMI 
100 1 |a Marchetti, Domingos H. U. 
245 1 0 |a Asymptotic Time Decay in Quantum Physics. 
260 |a Singapore :  |b World Scientific,  |c 2012. 
300 |a 1 online resource (362 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monograph is devoted to a clear and precise, yet pedagogical account of the associated concepts and methods. 
588 0 |a Print version record. 
505 0 |a Preface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem. 
505 8 |a 4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule. 
505 8 |a 6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy. 
504 |a Includes bibliographical references (pages 331-34) and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Asymptotic symmetry (Physics) 
650 0 |a Symmetry (Physics) 
650 0 |a Quantum field theory. 
650 6 |a Symétrie asymptotique (Physique) 
650 6 |a Symétrie (Physique) 
650 6 |a Théorie quantique des champs. 
650 7 |a SCIENCE  |x Physics  |x Nuclear.  |2 bisacsh 
650 7 |a Asymptotic symmetry (Physics)  |2 fast  |0 (OCoLC)fst00819870 
650 7 |a Quantum field theory.  |2 fast  |0 (OCoLC)fst01085105 
650 7 |a Symmetry (Physics)  |2 fast  |0 (OCoLC)fst01140819 
700 1 |a Wreszinski, Walter F. 
776 0 8 |i Print version:  |z 9789814383806 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=517000  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 24464885 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1109705 
938 |a ebrary  |b EBRY  |n ebr10640599 
938 |a EBSCOhost  |b EBSC  |n 517000 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24464885 
938 |a YBP Library Services  |b YANK  |n 9961402 
994 |a 92  |b IZTAP