Narrow operators on function spaces and vector lattices /
"Most classes of operators that are not isomorphic embeddings are characterized by some kind of a "smallness" condition. Narrow operators are those operators defined on function spaces that are "small" at {-1,0,1}-valued functions, e.g. compact operators are narrow. The orig...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin :
De Gruyter,
[2013]
|
Colección: | De Gruyter studies in mathematics ;
45. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction and preliminaries
- Each "small" operator is narrow
- Applications to nonlocally convex spaces
- Noncompact narrow operators
- Ideal properties, conjugates, spectrum and numerical radii
- Daugavet-type properties of Lebesgue and Lorentz spaces
- Strict singularity versus narrowness
- Weak embeddings of L1
- Spaces X for which every operator T L(Lp, X) is narrow
- Narrow operators on vector lattices
- Some variants of the notion of narrow operators
- Open problems.