|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn826443506 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
120912s2013 enka fob 000 0 eng d |
040 |
|
|
|a CDX
|b eng
|e pn
|c CDX
|d OCLCO
|d N$T
|d IDEBK
|d YDXCP
|d E7B
|d STF
|d OKU
|d CUS
|d OCLCQ
|d UPM
|d OCLCF
|d OCLCQ
|d OCLCO
|d COO
|d EBLCP
|d OCLCQ
|d STBDS
|d OCLCQ
|d DEBBG
|d BUF
|d WYU
|d YOU
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|
019 |
|
|
|a 922972076
|a 992884903
|a 1058937531
|
020 |
|
|
|a 9780191647000
|q (electronic bk.)
|
020 |
|
|
|a 0191647004
|q (electronic bk.)
|
020 |
|
|
|a 9780199695607
|
020 |
|
|
|a 0199695601
|
020 |
|
|
|z 9781283950404
|q (MyiLibrary)
|
020 |
|
|
|z 1283950405
|q (MyiLibrary)
|
029 |
1 |
|
|a DEBBG
|b BV043056243
|
029 |
1 |
|
|a DEBSZ
|b 446429872
|
029 |
1 |
|
|a NLGGC
|b 35678472X
|
035 |
|
|
|a (OCoLC)826443506
|z (OCoLC)922972076
|z (OCoLC)992884903
|z (OCoLC)1058937531
|
050 |
|
4 |
|a QA279.5
|
072 |
|
7 |
|a MAT
|2 eflch
|
072 |
|
7 |
|a MAT
|x 029010
|2 bisacsh
|
082 |
0 |
4 |
|a 519.5/42
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Bayesian theory and applications /
|c edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens.
|
260 |
|
|
|a Oxford :
|b Oxford University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (xi, 702 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
8 |
|
|a This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a ""Cover""; ""Contents""; ""Contributors""; ""Introduction""; ""Part I: Exchangeability""; ""1 Observables and models: exchangeability and the inductive argument""; ""2 Exchangeability and its ramifications""; ""Part II: Hierarchical Models""; ""3 Hierarchical modelling""; ""4 Bayesian hierarchical kernel machines for nonlinear regression and classification""; ""5 Flexible Bayesian modelling for clustered categorical responses in developmental toxicology""; ""Part III: Markov Chain Monte Carlo""; ""6 Markov chain Monte Carlo methods""; ""7 Advances in Markov chain Monte Carlo""
|
505 |
8 |
|
|a ""Part IV: Dynamic Models""""8 Bayesian dynamic modelling""; ""9 Hierarchical modelling in time series: the factor analytic approach""; ""10 Dynamic and spatial modelling of block maxima extremes""; ""Part V: Sequential Monte Carlo""; ""11 Online Bayesian learning in dynamic models: an illustrative introduction to particle methods""; ""12 Semi-supervised classification of texts using particle learning for probabilistic automata""; ""Part VI: Nonparametrics""; ""13 Bayesian nonparametrics""; ""14 Geometric weight priors and their applications""
|
505 |
8 |
|
|a ""15 Revisiting Bayesian curve fitting using multivariate normal mixtures""""Part VII: Spline Models and Copulas""; ""16 Applications of Bayesian smoothing splines""; ""17 Bayesian approaches to copula modelling""; ""Part VIII: Model Elaboration and Prior Distributions""; ""18 Hypothesis testing and model uncertainty""; ""19 Proper and non-informative conjugate priors for exponential family models""; ""20 Bayesian model specification: heuristics and examples""; ""21 Case studies in Bayesian screening for time-varying model structure: the partition problem""
|
505 |
8 |
|
|a ""Part IX: Regressions and Model Averaging""""22 Bayesian regression structure discovery""; ""23 Gibbs sampling for ordinary, robust and logistic regression with Laplace priors""; ""24 Bayesian model averaging in the M-open framework""; ""Part X: Finance and Actuarial Science""; ""25 Asset allocation in finance: a Bayesian perspective""; ""26 Markov chain Monte Carlo methods in corporate finance""; ""27 Actuarial credibility theory and Bayesian statistics�the story of a special evolution""; ""Part XI: Medicine and Biostatistics""; ""28 Bayesian models in biostatistics and medicine""
|
505 |
8 |
|
|a ""29 Subgroup analysis""""30 Surviving fully Bayesian nonparametric regression models""; ""Part XII: Inverse Problems and Applications""; ""31 Inverse problems""; ""32 Approximate marginalization over modelling errors and uncertainties in inverse problems""; ""33 Bayesian reconstruction of particle beam phase space""; ""Adrian Smith�s research supervision (PhD)""; ""Adrian Smith�s publications""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Z""
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Bayesian statistical decision theory.
|
650 |
|
6 |
|a Théorie de la décision bayésienne.
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x Bayesian Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Bayesian statistical decision theory.
|2 fast
|0 (OCoLC)fst00829019
|
700 |
1 |
|
|a Damien, Paul,
|d 1960-
|e editor.
|
700 |
1 |
|
|a Dellaportas, Petros,
|e editor.
|
700 |
1 |
|
|a Polson, Nicholas G.,
|d 1963-
|e editor.
|
700 |
1 |
|
|a Stephens, David A.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Bayesian theory and applications.
|b First edition.
|d Oxford : Oxford University Press, 2013
|z 9780199695607
|w (OCoLC)836808590
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=522001
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 24563163
|c 529.15 GBP
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3055034
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10645149
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 522001
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis24563163
|
938 |
|
|
|a Oxford University Press USA
|b OUPR
|n EDZ0000126792
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9975779
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10253351
|
994 |
|
|
|a 92
|b IZTAP
|