Cargando…

Insulating and semiconducting glasses /

This book reviews principal topical issues on the basic science of glasses and amorphous thin-films. It also includes select applications of these materials in current and evolving technologies, including optical recording, imaging, solar cells, battery technology and field-emission displays. The gl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Boolchand, P. (Punit)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2000.
Colección:Series on directions in condensed matter physics ; vol. 17.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents
  • Preface
  • Editorial Consultants
  • 1 Glass Formation and the Nature of the Glass Transition
  • 1. Introduction: Questions, Concepts, and Terminology
  • 1.1. What is a glass?
  • 1.2. Ergodicity-breaking and the glass transition
  • 2. Origin of Glassforming Ability
  • 3. The Kauzmann Paradox and the Potential Energy Hypersurface
  • 4. Relaxation and Entropy
  • 4.1. Relaxation in the non-ergodic state
  • 4.2. Relaxation in the ergodic domain
  • 4.3. Relaxation in the non-ergodic state near Tg
  • 4.4. Entropy at the glass transition and the validity of Ehrenfest-like thermodynamic relations5. Kinetic Aspects of Vitrification: Strong and Fragile Liquids
  • 5.1. The glass transition in covalent systems
  • 6. View from the Solid
  • 7. Polyamorphism
  • 7.1. First order transitions in liquid silicon
  • 7.2. Strong and fragile SiO2
  • Acknowledgments
  • References
  • 2 Dual Nature of Molecular Glass Transitions
  • 1. Introduction
  • 2. Prototypical Molecular Glasses
  • 3. Kinetic Data
  • 4. Diffraction Data: The Upper Glass Transition
  • ""5. NMR Relaxation Data""""6. Dual Relaxation Modes""; ""References""; ""3 The Generic Phenomenology of Glass Formation""; ""1. Introduction and Historic Background""; ""2. Basic Phenomenological Dependences""; ""3. Time of Molecular Relaxation in Glass Forming Liquids""; ""4. Temperature Dependence of the Structural Parameter Î?""; ""5. The Kinetic Conditions for Vitrification and the Definition of the Vitreous State""; ""6. Thermodynamic Phase Transitions and the Process of Vitrification""; ""7. Conclusions and Outlook""; ""References""; ""4 The Structure and Rigidity of Network Glasses""
  • 1. Introduction2. Continuous Random Networks
  • 2.1. Hand-built CRN models
  • 2.2. Computer-built CRN models
  • 2.2.1. Guttman model
  • 2.2.2. Wooten-Weaire method
  • 3. Constraint Counting
  • 4. Generic Rigidity Percolation
  • 4.1. The pebble game
  • 4.2. Two dimensional central force networks
  • 4.3. Three dimensional bond bending networks
  • 5. Surface Floppy Modes
  • 5.1. Basic counting techniques
  • 5.2. Problems with periodic boundary conditions
  • 6. Experiments
  • 6.1. Bulk materials
  • 6.2. Correction for dangling bonds
  • 6.3. Silicate networks7. Summary
  • Acknowledgments
  • References
  • 5 Glass Structure by Scattering Methods and Spectroscopy
  • A. X-RAY AND NEUTRON DIFFRACTION
  • 1. Introduction
  • 1.1. The random network theory
  • 1.2. Chalcogenide systems
  • 1.3. Multi-component glasses
  • 1.4. Superstructural units
  • 2. Quantification of Amorphous Solid Structures
  • 2.1. Range I: The structural unit
  • 2.2. Range II: The interconnection of adjacent structural units
  • 2.3. Range III: The network topology/order beyond the adjacent structural unit