Cargando…

Interdisciplinary approaches to robot learning /

Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangero...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Demiris, John, 1969-, Birk, Andreas, 1969-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, ©2000.
Colección:World Scientific series in robotics and intelligent systems ; vol. 24.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn824362752
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130115s2000 si a ob 000 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d IDEBK  |d E7B  |d OCLCF  |d YDXCP  |d EBLCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 666960685  |a 1086431043 
020 |a 9789812792747  |q (electronic bk.) 
020 |a 9812792740  |q (electronic bk.) 
020 |z 9810243200 
020 |z 9789810243203 
029 1 |a AU@  |b 000054191893 
029 1 |a DEBBG  |b BV043144791 
029 1 |a DEBSZ  |b 421302402 
029 1 |a GBVCP  |b 804230293 
035 |a (OCoLC)824362752  |z (OCoLC)666960685  |z (OCoLC)1086431043 
050 4 |a TJ211.35  |b .I57 2000eb 
072 7 |a TEC  |x 037000  |2 bisacsh 
082 0 4 |a 629.892631  |2 22 
084 |a DAT 708f  |2 stub 
049 |a UAMI 
245 0 0 |a Interdisciplinary approaches to robot learning /  |c edited by J. Demiris, A Birk. 
260 |a Singapore ;  |a River Edge, N.J. :  |b World Scientific,  |c ©2000. 
300 |a 1 online resource (ix, 208 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific series in robotics and intelligent systems ;  |v vol. 24 
500 |a JM20001121. 
505 0 |a Interdisciplinary approaches to robot learning : introduction / J. Demiris and A. Birk -- Bootstrapping the developmental process : the filter hypothesis / L. Berthouze -- Biomimetic gaze stabilization / T. Shibata and S. Schaal -- Experiments and models about cognitive map learning for motivated navigation / P. Gaussier [and others] -- Learning selection of action for cortically-inspired robot control / H. Frezza-Buet and F. Alexandre -- Transferring learned knowledge in a lifelong learning mobile robot agent / J. O'Sullivan -- Of hummingbirds and helicopters : an algebraic framework for interdisciplinary studies of imitation and its applications / C. Nehaniv and K. Dautenhahn -- Evolving complex visual behaviours using genetic programming and shaping / S. Perkins and G.M. Hayes -- Preston : a system for the evaluation of behaviour sequences / M. Wilson. 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
520 |a Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangerous for humans. Robots can also inhabit dynamic environments, for example to operate among humans, not just in factories, but also taking on more active roles. Recently, for instance, they have made their way into the home entertainment market. Given the variety of situations that robots will be placed in, learning becomes increasingly important. Robot learning is essentially about equipping robots with the capacity to improve their behaviour over time, based on their incoming experiences. The papers in this volume present a variety of techniques. Each paper provides a mini-introduction to a subfield of robot learning. Some also give a fine introduction to the field of robot learning as a whole. There is one unifying aspect to the work reported in the book, namely its interdisciplinary nature, especially in the combination of robotics, computer science and biology. This approach has two important benefits: first, the study of learning in biological systems can provide robot learning scientists and engineers with valuable insights into learning mechanisms of proven functionality and versatility; second, computational models of learning in biological systems, and their implementation in simulated agents and robots, can provide researchers of biological systems with a powerful platform for the development and testing of learning theories. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Robots  |x Control systems. 
650 0 |a Machine learning. 
650 6 |a Robots  |x Systèmes de commande. 
650 6 |a Apprentissage automatique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Robotics.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Robots  |x Control systems  |2 fast 
700 1 |a Demiris, John,  |d 1969- 
700 1 |a Birk, Andreas,  |d 1969- 
776 0 8 |i Print version:  |t Interdisciplinary approaches to robot learning.  |d Singapore ; River Edge, N.J. : World Scientific, ©2000  |z 9810243200  |w (OCoLC)45408815 
830 0 |a World Scientific series in robotics and intelligent systems ;  |v vol. 24. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514157  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685035 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3051057 
938 |a ebrary  |b EBRY  |n ebr10699316 
938 |a EBSCOhost  |b EBSC  |n 514157 
938 |a YBP Library Services  |b YANK  |n 9966324 
994 |a 92  |b IZTAP