|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn821869871 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
121218s2012 enk ob 000 0 eng d |
040 |
|
|
|a CAMBR
|b eng
|e pn
|c CAMBR
|d EBLCP
|d CDX
|d OCLCO
|d MHW
|d DEBSZ
|d OCLCQ
|d OCLCF
|d N$T
|d UMI
|d COO
|d OCLCQ
|d AU@
|d OCLCQ
|d S8J
|d OCLCQ
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d S9M
|
019 |
|
|
|a 825072109
|a 837185876
|a 1167168953
|
020 |
|
|
|a 9781139208574
|q (electronic bk.)
|
020 |
|
|
|a 1139208578
|q (electronic bk.)
|
020 |
|
|
|a 9781139840699
|q (electronic bk.)
|
020 |
|
|
|a 113984069X
|q (electronic bk.)
|
020 |
|
|
|z 9781299405769
|
020 |
|
|
|z 1299405762
|
020 |
|
|
|z 9781139843065
|
020 |
|
|
|z 1139843060
|
020 |
|
|
|z 1107608503
|
020 |
|
|
|z 9781107608504
|
029 |
1 |
|
|a AU@
|b 000050492151
|
029 |
1 |
|
|a DEBBG
|b BV041120954
|
029 |
1 |
|
|a DEBSZ
|b 381034232
|
029 |
1 |
|
|a DEBSZ
|b 396758665
|
035 |
|
|
|a (OCoLC)821869871
|z (OCoLC)825072109
|z (OCoLC)837185876
|z (OCoLC)1167168953
|
037 |
|
|
|a 471826
|b MIL
|
050 |
|
4 |
|a QA9
|b .A66 2012
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Appalachian set theory :
|b 2006-2012 /
|c edited by James Cummings and Ernest Schimmerling.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society lecture note series ;
|v 406
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience.
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Introduction; 1 An introduction to Pmax forcing; 1 Introduction; 2 Setup: iterations and the definition of Pmax; 3 First properties of Pmax; 4 Existence of Pmax conditions; 5 S2 maximality; 6 Discussion; References; 2 Countable Borel Equivalence Relations; First lecture; 1.1 Standard Borel spaces and Borel equivalence relations; 1.2 Borel reducibility; 1.3 Countable Borel equivalence relations; 1.4 Turing equivalence and the Martin conjectures; Second lecture.
|
505 |
8 |
|
|a 2.1 The fundamental question in the theory of countable Borel equivalence relations2.2 Essentially free countable Borel equivalence relations; 2.3 Bernoulli actions, Popa superrigidity, and the proof of Theorem 2.11; 2.4 Free and non-essentially free countable Borel equivalence relations; Third lecture; 3.1 Ergodicity, strong mixing and Borel cocycles; 3.2 Popa's Cocycle Superrigidity Theorem and the proof of Theorem 2.16; 3.3 Torsion-free abelian groups of finite rank; 3.4 E0-ergodicity; 3.5 The non-universality of the isomorphism relation for torsion-free abelian groups of finite rank.
|
505 |
8 |
|
|a Fourth lecture4.1 Containment vs. Borel reducibility; 4.2 Unique ergodicity and ergodic components; 4.3 The proof of Theorem 4.5; 4.4 Profinite actions and Ioana superrigidity; Open problems; 5.1 Hyperfinite relations.; 5.2 Treeable relations.; 5.3 Universal relations.; References; 3 Set theory and operator algebras; Acknowledgments; 1 Introduction; 1.1 Nonseparable C*-algebras; 1.2 Ultrapowers; 1.3 Structure of corona algebras; 1.4 Classification and descriptive set theory; 2 Hilbert spaces and operators; 2.1 Normal operators and the spectral theorem; 2.2 The spectrum of an operator.
|
505 |
8 |
|
|a 3 C*-algebrasTypes of operators in C*-algebras; 3.1 Some examples of C*-algebras; Full matrix algebras; The algebra of compact operators; The Calkin algebra; 3.2 Automatic continuity and the Gelfand transform; 3.3 Continuous functional calculus; 3.4 More examples of C*-algebras; Direct limits; UHF (uniformly hyperfinite) algebras; AF (approximately finite) algebras; Even more examples; 4 Positivity, states and the GNS construction; 4.1 Irreducible representations and pure states; 4.2 On the existence of states; 5 Projections in the Calkin algebra; Stone duality.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Logic, Symbolic and mathematical.
|
650 |
|
6 |
|a Logique symbolique et mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Lógica matemática
|2 embne
|
650 |
|
7 |
|a Logic, Symbolic and mathematical
|2 fast
|
700 |
1 |
|
|a Cummings, James.
|
700 |
1 |
|
|a Schimmerling, Ernest.
|
776 |
0 |
8 |
|i Print version:
|t Appalachian set theory.
|d [S.l.] : Cambridge University Pres, 2012
|z 1107608503
|w (OCoLC)818143101
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v 406.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498398
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 25154666
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1057561
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 498398
|
994 |
|
|
|a 92
|b IZTAP
|