Dark matter, neutrinos, and our solar system /
Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrons and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific,
©2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. The advent of dark matter: galaxies, clusters, planet formation, and comet collision. 1.1. A historical perspective. 1.2. Galaxies in the universe and our own galaxy. 1.3. Clusters
- their formation and classification. 1.4. Search for extrasolar systems, and role of comets in their existence
- 2. Stars of poor visibility and the methods to track them. 2.1. Tools of the trade. 2.2. Dark stars. 2.3. Our solar system
- 3. Models in cosmology, the luminosity of a star, white dwarfs and neutron stars. 3.1. Newtonian dynamics, Hubble's Law, the scale factor, and the age and density of the universe. 3.2. Relativistic models, red shift, and luminosity-distance. 3.3. The radiative equilibrium and luminosity of a star. 3.4. Models for low-mass stars. 3.5. Supernovae
- the superluminous inhabitants of our blue dome. 3.6. White dwarf stars and neutron stars
- 4. Black holes: the stars with no shine. 4.1. The concept of horizon in two theories. 4.2. Black holes are more humane than we thought they were. 4.3. Black holes
- their natural features. 4.4. Sagittarius A*
- the massive black hole of our galaxy. 4.5. Supermassive black holes and star formation
- 5. Particles we encounter (a historical overview). 5.1. Invention of air pumps; the realm of electricity and magnetism, the science and the scientists; cathode-rays
- their different interpretations, and the emergence of the electron. 5.2. The process of decay and the birth of the alpha particle and its siblings. 5.3. Models of the atom, Rutherford's experiment and the Geiger counter. 5.4. Conservation laws and [symbol] decay; Fermi's 4-point theory. 5.5. The family that continues to grow. 5.6. Classification among the particle family. 5.7. Particles
- the grand finale.
- 6. Dark matter and dark energy (a peep into the deep) some questions and answers. 6.1. The classes and the sources. 6.2. Models, density parameters, luminosity function and M/L ratios. 6.3. Problems in understanding the cosmic puzzle and the events that cause them. 6.4. Densities of various types of matter in the universe. 6.5. Role of entropy and temperature in density estimates and a model of inflationary universe. 6.6. Dark matter
- cold, warm and hot. 6.7. The particle axion
- a part of dark matter. 6.8. have We reached the Everest
- 7. Neutrino
- the puzzle and the power. 7.1. Discovery of neutrino, its early history, and its flavours. 7.2. Solar neutrinos, their discovery and characterization. 7.3. Neutrino oscillations
- past, present and future. 7.4. Search for additional flavours [successes and failures]. 7.5. Neutrinos in dark matter, neutrino mass and anti-neutrino. 7.6. Atmospheric neutrinos; and some useful models based on GUTs and see-saw mechanism. 7.7. Grand unification via SO(10) and see-saw mechanism
- 8. Detection of lightest supersymmetric particles (LSPs) in dark matter, and the search for WIMPs. 8.1. SUSY parameter space. 8.2. M-DM models. 8.3. SUGRA models that deviate from universality. 8.4. SUSY models (the sneutrinos). 8.5. SUSY models: the neutralinos. 8.6. R-parity invariance (Rp) or non-invariance [symbol] in MSSM. 8.7. Friendly WIMPs. 8.8. Detection facilities and research programmes for WIMPs
- 9. The years 2004-2010: a boom for planetary scientists. 9.1. Comet Wild 2. 9.2. A wealth of knowledge that seeded in the year 2004. 9.3. Spacecraft Cassini and planet Saturn. 9.4. Cosmological fetes of 2006.