Cargando…

Vectors, pure and applied : a general introduction to linear algebra /

"Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Körner, T. W. (Thomas William), 1946- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn821617863
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121217s2013 enka ob 001 0 eng d
010 |z  2012036797 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d CAMBR  |d CDX  |d OCLCO  |d COO  |d CUS  |d IDEBK  |d E7B  |d UMI  |d ZMC  |d DEBSZ  |d LRU  |d OCLCO  |d NLGGC  |d OCLCF  |d EBLCP  |d OCLCQ  |d OCL  |d OCLCQ  |d Z5A  |d OCLCQ  |d BUF  |d UAB  |d OCLCQ  |d CEF  |d KSU  |d OCLCQ  |d INT  |d OCLCQ  |d WYU  |d OCLCQ  |d UKAHL  |d OCLCQ  |d A6Q  |d OCLCQ  |d VLY  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M 
019 |a 823724182  |a 824654984  |a 828928474  |a 830040082  |a 855055637  |a 956503173  |a 1066558709  |a 1162012975  |a 1241966020 
020 |a 9781139626156  |q (electronic bk.) 
020 |a 1139626159  |q (electronic bk.) 
020 |a 9781139520034  |q (electronic bk.) 
020 |a 1139520032  |q (electronic bk.) 
020 |a 9781283871006  |q (MyiLibrary) 
020 |a 1283871009  |q (MyiLibrary) 
020 |a 9781139622431  |q (e-book) 
020 |a 1139622439  |q (e-book) 
020 |a 9781139616850 
020 |a 1139616854 
020 |z 9781107033566 
020 |z 110703356X 
020 |z 9781107675223 
020 |z 1107675227 
020 |a 1107238277 
020 |a 9781107238275 
020 |a 1107255023 
020 |a 9781107255029 
020 |a 1139611275 
020 |a 9781139611275 
020 |a 1139613138 
020 |a 9781139613132 
029 1 |a AU@  |b 000051829661 
029 1 |a AU@  |b 000052006259 
029 1 |a AU@  |b 000058200009 
029 1 |a DEBBG  |b BV041431209 
029 1 |a DEBSZ  |b 379331292 
029 1 |a DEBSZ  |b 398270392 
029 1 |a DEBSZ  |b 445559802 
029 1 |a NLGGC  |b 355376768 
029 1 |a NZ1  |b 14927080 
035 |a (OCoLC)821617863  |z (OCoLC)823724182  |z (OCoLC)824654984  |z (OCoLC)828928474  |z (OCoLC)830040082  |z (OCoLC)855055637  |z (OCoLC)956503173  |z (OCoLC)1066558709  |z (OCoLC)1162012975  |z (OCoLC)1241966020 
037 |a 418350  |b MIL 
050 4 |a QA200  |b .K67 2013eb 
072 7 |a MAT  |x 012000  |2 bisacsh 
072 7 |a MAT  |2 eflch 
082 0 4 |a 516/.182  |2 23 
084 |a 31.25  |2 bcl 
084 |a MAT002000  |2 bisacsh 
049 |a UAMI 
100 1 |a Körner, T. W.  |q (Thomas William),  |d 1946-  |e author. 
245 1 0 |a Vectors, pure and applied :  |b a general introduction to linear algebra /  |c T.W. Körner. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (xii, 444 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 0 |g Part I.  |t Familiar vector spaces --  |g 1.  |t Gaussian elimination --  |t Two hundred years of algebra --  |t Computational matters --  |t Detached coefficients --  |t Another fifty years --  |g 2.  |t A little geometry --  |t Geometric vectors --  |t Higher dimensions --  |t Euclidean distance --  |t Geometry, plane and solid --  |g 3.  |t The algebra of square matrices --  |t The summation convention --  |t Multiplying matrices --  |t More algebra for square matrices --  |t Decomposition into elementary matrices --  |t Calculating the inverse --  |g 4.  |t The secret life of determinants --  |t The area of a parallelogram --  |t Rescaling --  |t 3 x 3 determinants --  |t Determinants of n × n matrices --  |t Calculating determinants --  |g 5.  |t Abstract vector spaces --  |t The space Cn --  |t Abstract vector spaces --  |t Linear maps --  |t Dimension --  |t Image and kernel --  |t Secret sharing --  |g 6.  |t Linear maps from Fn to itself --  |t Linear maps, bases and matrices --  |t Eigenvectors and eigenvalues --  |t Diagonalisation and eigenvectors --  |t Linear maps from C2to itself --  |t Diagonalising square matrices --  |t Iteration's artful aid --  |t LU factorisation --  |g 7.  |t Distance preserving linear maps --  |t Orthonormal bases --  |t Orthogonal maps and matrices --  |t Rotations and reflections in R2and R3 --  |t Reflections in Rn --  |t QR factorisation --  |g 8.  |t Diagonalisation for orthonormal bases --  |t Symmetric maps --  |t Eigenvectors for symmetric linear maps --  |t Stationary points --  |t Complex inner product --  |g 9.  |t Cartesian tensors --  |t Physical vectors --  |t General Cartesian tensors --  |t More examples --  |t The vector product --  |g 10.  |t More on tensors --  |t Some tensorial theorems --  |t A (very) little mechanics --  |t Left-hand, right-hand --  |t General tensors --  |g Part II.  |t General vector spaces --  |g 11.  |t Spaces of linear maps --  |t A look at L(U, V) --  |t A look at L(U, U) --  |t Duals (almost) without using bases --  |t Duals using bases --  |g 12.  |t Polynomials in L(U, U) --  |t Direct sums --  |t The Cayley-Hamilton theorem --  |t Minimal polynomials --  |t The Jordan normal form --  |t Applications --  |g 13.  |t Vector spaces without distances --  |t A little philosophy --  |t Vector spaces over fields --  |t Error correcting codes --  |g 14.  |t Vector spaces with distances --  |t Orthogonal polynomials --  |t Inner products and dual spaces --  |t Complex inner product spaces --  |g 15.  |t More distances --  |t Distance on L(U, U) --  |t Inner products and triangularisation --  |t The spectral radius --  |t Normal maps --  |g 16.  |t Quadratic forms and their relatives --  |t Bilinear forms --  |t Rank and signature --  |t Positive definiteness --  |t Antisymmetric bilinear forms --  |t Further exercises. 
520 |a "Many books in linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways and how these ways are connected, preparing students for further work in these areas. The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online"--  |c Provided by publisher. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Vector algebra. 
650 0 |a Algebras, Linear. 
650 6 |a Algèbre vectorielle. 
650 6 |a Algèbre linéaire. 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Álgebra lineal  |2 embne 
650 7 |a Álgebra vectorial  |2 embne 
650 7 |a Algebras, Linear  |2 fast 
650 7 |a Vector algebra  |2 fast 
776 0 8 |i Print version:  |a Körner, T.W. (Thomas William), 1946-  |t Vectors, pure and applied.  |d Cambridge : Cambridge University Press, 2013  |z 9781107033566  |w (DLC) 2012036797  |w (OCoLC)809611894 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=508905  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34207282 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33351088 
938 |a Coutts Information Services  |b COUT  |n 24421728  |c 86.88 GBP 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1099956 
938 |a ebrary  |b EBRY  |n ebr10634349 
938 |a EBSCOhost  |b EBSC  |n 508905 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24421728 
938 |a YBP Library Services  |b YANK  |n 9947744 
938 |a YBP Library Services  |b YANK  |n 9949514 
938 |a YBP Library Services  |b YANK  |n 9979410 
938 |a YBP Library Services  |b YANK  |n 9944096 
994 |a 92  |b IZTAP