Cargando…

Unitary symmetry and combinatorics /

This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Louck, James D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn820944537
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 090522s2008 si a ob 001 0 eng d
040 |a LGG  |b eng  |e pn  |c LGG  |d OCLCO  |d N$T  |d IAC  |d E7B  |d OCLCF  |d DEBSZ  |d YDXCP  |d MHW  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ 
019 |a 851264362  |a 1086522433 
020 |a 9789812814739  |q (electronic bk.) 
020 |a 9812814736  |q (electronic bk.) 
020 |z 9789812814722 
020 |z 9812814728 
029 1 |a DEBBG  |b BV043081620 
029 1 |a DEBSZ  |b 383447704 
029 1 |a DEBSZ  |b 421284897 
029 1 |a DEBSZ  |b 445584106 
035 |a (OCoLC)820944537  |z (OCoLC)851264362  |z (OCoLC)1086522433 
050 4 |a QA167 
072 7 |a MAT  |x 036000  |2 bisacsh 
082 0 4 |a 511.6  |2 22 
049 |a UAMI 
100 1 |a Louck, James D. 
245 1 0 |a Unitary symmetry and combinatorics /  |c James D. Louck. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2008. 
300 |a 1 online resource (xxi, 619 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 597-609) and index. 
505 0 |a 1. Quantum angular momentum. 1.1. Background and viewpoint. 1.2 Abstract angular momentum. 1.3. SO(3, [symbol]) and SU(2) solid harmonics. 1.4. Combinatorial features. 1.5. Kronecker product of solid harmonics. 1.6. SU(n) solid harmonics. 1.7. Generalization to U(2) -- 2. Composite systems. 2.1. General setting. 2.2. Binary coupling theory. 2.3. Classification of recoupling matrices -- 3. Graphs and adjacency diagrams. 3.1. Binary trees and trivalent trees. 3.2. Nonisomorphic trivalent trees. 3.3. Cubic graphs and trivalent trees. 3.4. Cubic graphs -- 4. Generating functions. 4.1. Pfaffians and double Pfaffians. 4.2. Skew-symmetric matrix. 4.3. Triangle monomials. 4.4. Coupled wave functions. 4.5. Recoupling coefficients. 4.6. Special cases. 4.7. Concluding remarks -- 5. The [symbol]-polynomials: form. 5.1. Overview. 5.2. Defining relations. 5.3. Restriction to fewer variables. 5.4. Vector space aspects. 5.5. Fundamental structural relations. 
505 0 |a 6. Operator actions in Hilbert space. 6.1. Introductory remarks. 6.2. Action of fundamental shift operators. 6.3. Digraph interpretation. 6.4. Algebra of shift operators. 6.5. Hilbert space and [symbol]-polynomials. 6.6. Shift operator polynomials. 6.7. Kronecker product reduction. 6.8. More on explicit operator actions -- 7. The [symbol]-polynomials: structure. 7.1. The [symbol] matrices. 7.2. Reduction of [symbol]. 7.3. Binary tree structure: [symbol]-coefficients -- 8. The general linear and unitary groups. 8.1. Background and review. 8.2. GL(n, [symbol]) and its unitary subgroup U(n). 8.3. Commuting Hermitian observables. 8.4. Differential operator actions. 8.5. Eigenvalues of the Gelfand invariants -- 9. Tensor operator theory. 9.1. Introduction. 9.2. Unit tensor operators. 9.3. Canonical tensor operators. 9.4. Properties of reduced matrix elements. 9.5. The unitary group U(3). 9.6. The U(3) characteristic null spaces. 9.7. The U(3) : U(2) unit projective operators. 
505 0 |a 10. Compendium A. Basic algebraic objects. 10.1. Groups. 10.2. Rings. 10.3. Abstract Hilbert spaces. 10.4. Properties of matrices. 10.5. Tensor product spaces. 10.6. Vector spaces of polynomials. 10.7. Group representations -- 11. Compendium B: combinatorial objects. 11.1. Partitions and tableaux. 11.2. Young frames and tableaux. 11.3. Gelfand-Tsetlin patterns. 11.4. Generating functions and relations. 11.5. Multivariable special functions. 11.6. Symmetric functions. 11.7. Sylvester's identity. 11.8. Derivation of Weyl's dimension formula. 11.9. Other topics. 
520 |a This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Combinatorial analysis. 
650 0 |a Eightfold way (Nuclear physics) 
650 6 |a Analyse combinatoire. 
650 6 |a Symétrie unitaire. 
650 7 |a MATHEMATICS  |x Combinatorics.  |2 bisacsh 
650 7 |a Combinatorial analysis.  |2 fast  |0 (OCoLC)fst00868961 
650 7 |a Eightfold way (Nuclear physics)  |2 fast  |0 (OCoLC)fst00904062 
776 0 8 |i Print version:  |a Louck, James D.  |t Unitary symmetry and combinatorics.  |d Singapore ; Hackensack, NJ : World Scientific, ©2008  |z 9789812814722  |w (DLC) 2008300334  |w (OCoLC)273893634 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521211  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685788 
938 |a ebrary  |b EBRY  |n ebr10688197 
938 |a EBSCOhost  |b EBSC  |n 521211 
938 |a YBP Library Services  |b YANK  |n 9975191 
994 |a 92  |b IZTAP