Cargando…

Lectures on white noise functionals /

White noise analysis is an advanced stochastic calculus that has developed extensively since three decades ago. It has two main characteristics. One is the notion of generalized white noise functionals, the introduction of which is oriented by the line of advanced analysis, and they have made much c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hida, Takeyuki, 1927-2017
Otros Autores: Si, Si
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn820944509
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 090522s2008 si a ob 001 0 eng d
040 |a LGG  |b eng  |e pn  |c LGG  |d OCLCO  |d N$T  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d MERUC  |d ZCU  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d OCLCQ  |d STF  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCA  |d OCLCO  |d OCLCQ 
020 |a 9789812812049  |q (electronic bk.) 
020 |a 9812812040  |q (electronic bk.) 
029 1 |a AU@  |b 000058361751 
029 1 |a DEBBG  |b BV043081709 
029 1 |a DEBBG  |b BV044175683 
029 1 |a DEBSZ  |b 384347134 
029 1 |a DEBSZ  |b 421299223 
029 1 |a DEBSZ  |b 44558405X 
035 |a (OCoLC)820944509 
050 4 |a QA274.29 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/2  |2 22 
049 |a UAMI 
100 1 |a Hida, Takeyuki,  |d 1927-2017. 
245 1 0 |a Lectures on white noise functionals /  |c by T. Hida & Si Si. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2008. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 253-261) and index. 
505 0 |a 1. Introduction. 1.1. Preliminaries. 1.2. Our idea of establishing white noise analysis. 1.3. A brief synopsis of the book. 1.4. Some general background -- 2. Generalized white noise functionals. 2.1. Brownian motion and Poisson process; elemental stochastic processes. 2.2. Comparison between Brownian motion and Poisson process. 2.3. The Bochner-Minlos theorem. 2.4. Observation of white noise through the Lévy's construction of Brownian motion. 2.5. Spaces [symbol], F and [symbol] arising from white noise. 2.6. Generalized white noise functionals. 2.7. Creation and annihilation operators. 2.8. Examples. 2.9. Addenda. 
505 0 |a 3. Elemental random variables and Gaussian processes. 3.1. Elemental noises. 3.2. Canonical representation of a Gaussian process. 3.3. Multiple Markov Gaussian processes. 3.4. Fractional Brownian motion. 3.5. Stationarity of fractional Brownian motion. 3.6. Fractional order differential operator in connection with Lévy's Brownian motion. 3.7. Gaussian random fields -- 4. Linear processes and linear fields. 4.1. Gaussian systems. 4.2. Poisson systems. 4.3. Linear functionals of Poisson noise. 4.4. Linear processes. 4.5. Lévy field and generalized Lévy field. 4.6. Gaussian elemental noises. 
505 0 |a 5. Harmonic analysis arising from infinite dimensional rotation group. 5.1. Introduction. 5.2. Infinite dimensional rotation group O(E). 5.3. Harmonic analysis. 5.4. Addenda to the diagram. 5.5. The Lévy group, the Windmill subgroup and the sign-changing subgroup of O(E). 5.6. Classification of rotations in O(E). 5.7. Unitary representation of the infinite dimensional rotation group O(E). 5.8. Laplacian -- 6. Complex white noise and infinite dimensional unitary group. 6.1. Why complex? 6.2. Some background. 6.3. Subgroups of [symbol]. 6.4. Applications -- 7. Characterization of Poisson noise. 7.1. Preliminaries. 7.2. A characteristic of Poisson noise. 7.3. A characterization of Poisson noise. 7.4. Comparison of two noises; Gaussian and Poisson. 7.5. Poisson noise functionals -- 8. Innovation theory. 8.1. A short history of innovation theory. 8.2. Definitions and examples. 8.3. Innovations in the weak sense. 8.4. Some other concrete examples. 
505 0 |a 9. Variational calculus for random fields and operator fields. 9.1. Introduction. 9.2. Stochastic variational equations. 9.3. Illustrative examples. 9.4. Integrals of operators -- 10. Four notable roads to quantum dynamics. 10.1. White noise approach to path integrals. 10.2. Hamiltonian dynamics and Chern-Simons functional integrals. 10.3. Dirichlet forms. 10.4. Time operator. 10.5. Addendum: Euclidean fields. 
520 |a White noise analysis is an advanced stochastic calculus that has developed extensively since three decades ago. It has two main characteristics. One is the notion of generalized white noise functionals, the introduction of which is oriented by the line of advanced analysis, and they have made much contribution to the fields in science enormously. The other characteristic is that the white noise analysis has an aspect of infinite dimensional harmonic analysis arising from the infinite dimensional rotation group. With the help of this rotation group, the white noise analysis has explored new areas of mathematics and has extended the fields of applications. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a White noise theory. 
650 0 |a Gaussian processes. 
650 6 |a Théorie du bruit blanc. 
650 6 |a Processus gaussiens. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Gaussian processes.  |2 fast  |0 (OCoLC)fst00939020 
650 7 |a White noise theory.  |2 fast  |0 (OCoLC)fst01744588 
700 1 |a Si, Si. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514719  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685663 
938 |a EBSCOhost  |b EBSC  |n 514719 
938 |a YBP Library Services  |b YANK  |n 9966432 
994 |a 92  |b IZTAP