Cargando…

The electron glass /

"Presenting an up-to-date report on electronic glasses, this book examines experiments and theories for a variety of disordered materials where electrons exhibit glassy properties. Some interesting mathematical models of idealized systems are also discussed. The authors examine problems in this...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pollak, Michael (Autor), Ortuño, Miguel, (Physicist) (Autor), Frydman, Aviad (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; The Electron glass; HalfTitle; Copyright; Dedication; Contents; Acknowledgments; Symbols; 1 Introduction; 2 Disordered electronic systems; 2.1 Disordered solids; 2.1.1 Energy scales; 2.1.2 Types of disordered solids; 2.2 Hamiltonians for disordered systems; 2.3 Strong disorder; 2.3.1 Strong localization; 2.3.2 Density of states
  • the Coulomb gap; 2.3.3 Hopping conduction; 2.4 Weak disorder; 2.4.1 Weak localization; 2.4.2 Magnetoresistance; 2.4.3 Mesoscopic fluctuations; 2.4.4 Density of states
  • zero bias anomaly; 2.5 Anderson localization and metal
  • insulator transitions.
  • 2.5.1 Perturbation expansion2.5.2 Scaling theory; 2.5.3 The Anderson metal
  • insulator transition; 2.5.4 The mott metal
  • insulator transition; 2.6 Percolation theory; 2.6.1 Percolation
  • basic concepts; 2.6.2 Percolation conductivity; 3 Basics of glasses; 3.1 The modern concept of glass; 3.2 The glass transition; 3.3 Types of glasses; 3.4 Ergodicity; 3.5 The fluctuation
  • dissipation theorem; 3.6 Aging; 3.7 Spin glasses; 3.7.1 Edward-Anderson model; 3.7.2 Mean field theory; 3.7.3 Hierarchical and droplet models; 3.8 Two-site systems; 4 Equilibrium properties of the electron glass.
  • 4.1 The model Hamiltonian for strong localization4.2 Density of states: the Coulomb gap; 4.2.1 Theory of the Coulomb gap; 4.2.2 Experiments probing the single-particle density of states; 4.3 Numerical simulations; 4.3.1 Numerical algorithms; 4.3.2 Density of states; 4.3.3 Thermodynamic properties; 4.3.4 The influence of quantum effects on the Coulomb gap; 4.4 Interactions and Anderson localization; 4.4.1 Many-body localization; 5 dc Conductivity; 5.1 dc Conductivity: experimental; 5.1.1 Impurity conduction in doped semiconductors; 5.1.2 Amorphous solids; 5.1.3 Granular metals.
  • 5.2 Elements of the theory of hopping transport5.2.1 Transition rates due to electron
  • phonon interaction; 5.2.2 Experimental indications for many-body transitions; 5.2.3 Correlation introduced by interaction; 5.2.4 The rate equation and the random impedance network; 5.3 Variable range hopping; 5.3.1 Noninteracting systems: Mott's law; 5.3.2 Interacting systems: Efros and Shklovskii's law; 5.4 Percolation approach to hopping conduction; 5.4.1 Activated regime, percolation treatment; 5.4.2 Variable range hopping, percolation treatment; 5.5 Scaling theory of transport.
  • 5.5.1 Scaling theory with interactions5.6 Numerical simulations; 5.6.1 Numerical results; 5.7 Concluding remarks; 6 Other transport properties of electron glasses; 6.1 High field conductivity; 6.1.1 Large electric fields
  • the ``activationless'' regime; 6.1.2 Moderate electric fields: percolation approaches; 6.1.3 Hot electron model; 6.2 Magnetoresistance; 6.2.1 The shrinkage effect; 6.2.2 The interference effect; 6.2.3 Magnetoresistance due to spins; 6.3 Hall effect; 6.4 ac Conductivity; 6.4.1 ac Conductivity
  • phonon assisted; 6.4.2 ac Conductivity
  • photon assisted.