Cargando…

Bridge to abstract mathematics /

Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Oberste-Vorth, Ralph W., 1959-
Otros Autores: Mouzakitis, Aristides, Lawrence, Bonita A., 1957-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Washington, DC] : Mathematical Association of America, ©2012.
Colección:MAA textbooks.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn818906408
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121121s2012 dcua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCO  |d OCLCQ  |d OCLCO  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d LOA  |d OCLCO  |d AZK  |d OCLCQ  |d AGLDB  |d CNNOR  |d MOR  |d PIFAG  |d OTZ  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCO  |d JBG  |d OCLCQ  |d A6Q  |d DKC  |d OCLCQ  |d ESU  |d UKCRE  |d AJS  |d OCLCO  |d CUY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 923220306  |a 929120364  |a 960204375  |a 961491254  |a 962640464  |a 988461420  |a 991958390  |a 994989212  |a 1037927046  |a 1038694562  |a 1045466102  |a 1055358406  |a 1062991312  |a 1077263573  |a 1081250137  |a 1083560678  |a 1153545617  |a 1198812247  |a 1228607278 
020 |a 9781614446064  |q (electronic bk.) 
020 |a 1614446067  |q (electronic bk.) 
020 |a 9781470453039  |q (online) 
020 |a 1470453037 
020 |z 9780883857793 
020 |z 0883857790 
029 1 |a AU@  |b 000051575273 
029 1 |a AU@  |b 000066750477 
029 1 |a CHNEW  |b 000635301 
029 1 |a CHNEW  |b 000892437 
029 1 |a DEBBG  |b BV043151176 
029 1 |a DEBBG  |b BV043624346 
029 1 |a DEBSZ  |b 421357274 
029 1 |a DEBSZ  |b 449725928 
029 1 |a NZ1  |b 15197710 
035 |a (OCoLC)818906408  |z (OCoLC)923220306  |z (OCoLC)929120364  |z (OCoLC)960204375  |z (OCoLC)961491254  |z (OCoLC)962640464  |z (OCoLC)988461420  |z (OCoLC)991958390  |z (OCoLC)994989212  |z (OCoLC)1037927046  |z (OCoLC)1038694562  |z (OCoLC)1045466102  |z (OCoLC)1055358406  |z (OCoLC)1062991312  |z (OCoLC)1077263573  |z (OCoLC)1081250137  |z (OCoLC)1083560678  |z (OCoLC)1153545617  |z (OCoLC)1198812247  |z (OCoLC)1228607278 
050 4 |a QA9 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a MAT  |x 018000  |2 bisacsh 
082 0 4 |a 511.3 
049 |a UAMI 
100 1 |a Oberste-Vorth, Ralph W.,  |d 1959- 
245 1 0 |a Bridge to abstract mathematics /  |c Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence. 
260 |a [Washington, DC] :  |b Mathematical Association of America,  |c ©2012. 
300 |a 1 online resource (xix, 232 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a MAA textbooks 
504 |a Includes bibliographical references (page 223) and index. 
588 0 |a Print version record. 
505 0 |a Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements 
505 8 |a Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets 
505 8 |a Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations 
505 8 |a Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises 
505 8 |a Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises 
520 |a Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Logic, Symbolic and mathematical  |v Textbooks. 
650 0 |a Mathematics  |v Textbooks. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Mathematics  |2 fast 
650 7 |a Beweis  |2 gnd 
650 7 |a Mathematik  |2 gnd 
655 7 |a Textbooks  |2 fast 
700 1 |a Mouzakitis, Aristides. 
700 1 |a Lawrence, Bonita A.,  |d 1957- 
776 0 8 |i Print version:  |a Oberste-Vorth, Ralph W., 1959-  |t Bridge to abstract mathematics.  |d [Washington, DC] : Mathematical Association of America, ©2012  |z 9780883857793  |w (OCoLC)809028598 
830 0 |a MAA textbooks. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=481551  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330426 
938 |a ebrary  |b EBRY  |n ebr10733069 
938 |a EBSCOhost  |b EBSC  |n 481551 
938 |a YBP Library Services  |b YANK  |n 9674951 
994 |a 92  |b IZTAP