|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn818906408 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
121121s2012 dcua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d E7B
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d EBLCP
|d OCLCO
|d OCLCQ
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d LOA
|d OCLCO
|d AZK
|d OCLCQ
|d AGLDB
|d CNNOR
|d MOR
|d PIFAG
|d OTZ
|d MERUC
|d OCLCQ
|d ZCU
|d U3W
|d STF
|d WRM
|d VTS
|d NRAMU
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d OCLCO
|d JBG
|d OCLCQ
|d A6Q
|d DKC
|d OCLCQ
|d ESU
|d UKCRE
|d AJS
|d OCLCO
|d CUY
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 923220306
|a 929120364
|a 960204375
|a 961491254
|a 962640464
|a 988461420
|a 991958390
|a 994989212
|a 1037927046
|a 1038694562
|a 1045466102
|a 1055358406
|a 1062991312
|a 1077263573
|a 1081250137
|a 1083560678
|a 1153545617
|a 1198812247
|a 1228607278
|
020 |
|
|
|a 9781614446064
|q (electronic bk.)
|
020 |
|
|
|a 1614446067
|q (electronic bk.)
|
020 |
|
|
|a 9781470453039
|q (online)
|
020 |
|
|
|a 1470453037
|
020 |
|
|
|z 9780883857793
|
020 |
|
|
|z 0883857790
|
029 |
1 |
|
|a AU@
|b 000051575273
|
029 |
1 |
|
|a AU@
|b 000066750477
|
029 |
1 |
|
|a CHNEW
|b 000635301
|
029 |
1 |
|
|a CHNEW
|b 000892437
|
029 |
1 |
|
|a DEBBG
|b BV043151176
|
029 |
1 |
|
|a DEBBG
|b BV043624346
|
029 |
1 |
|
|a DEBSZ
|b 421357274
|
029 |
1 |
|
|a DEBSZ
|b 449725928
|
029 |
1 |
|
|a NZ1
|b 15197710
|
035 |
|
|
|a (OCoLC)818906408
|z (OCoLC)923220306
|z (OCoLC)929120364
|z (OCoLC)960204375
|z (OCoLC)961491254
|z (OCoLC)962640464
|z (OCoLC)988461420
|z (OCoLC)991958390
|z (OCoLC)994989212
|z (OCoLC)1037927046
|z (OCoLC)1038694562
|z (OCoLC)1045466102
|z (OCoLC)1055358406
|z (OCoLC)1062991312
|z (OCoLC)1077263573
|z (OCoLC)1081250137
|z (OCoLC)1083560678
|z (OCoLC)1153545617
|z (OCoLC)1198812247
|z (OCoLC)1228607278
|
050 |
|
4 |
|a QA9
|
072 |
|
7 |
|a MAT
|x 016000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 018000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Oberste-Vorth, Ralph W.,
|d 1959-
|
245 |
1 |
0 |
|a Bridge to abstract mathematics /
|c Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence.
|
260 |
|
|
|a [Washington, DC] :
|b Mathematical Association of America,
|c ©2012.
|
300 |
|
|
|a 1 online resource (xix, 232 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a MAA textbooks
|
504 |
|
|
|a Includes bibliographical references (page 223) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements
|
505 |
8 |
|
|a Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets
|
505 |
8 |
|
|a Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations
|
505 |
8 |
|
|a Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises
|
505 |
8 |
|
|a Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises
|
520 |
|
|
|a Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Logic, Symbolic and mathematical
|v Textbooks.
|
650 |
|
0 |
|a Mathematics
|v Textbooks.
|
650 |
|
7 |
|a MATHEMATICS
|x Infinity.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Logic.
|2 bisacsh
|
650 |
|
7 |
|a Logic, Symbolic and mathematical
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
650 |
|
7 |
|a Beweis
|2 gnd
|
650 |
|
7 |
|a Mathematik
|2 gnd
|
655 |
|
7 |
|a Textbooks
|2 fast
|
700 |
1 |
|
|a Mouzakitis, Aristides.
|
700 |
1 |
|
|a Lawrence, Bonita A.,
|d 1957-
|
776 |
0 |
8 |
|i Print version:
|a Oberste-Vorth, Ralph W., 1959-
|t Bridge to abstract mathematics.
|d [Washington, DC] : Mathematical Association of America, ©2012
|z 9780883857793
|w (OCoLC)809028598
|
830 |
|
0 |
|a MAA textbooks.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=481551
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3330426
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10733069
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 481551
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9674951
|
994 |
|
|
|a 92
|b IZTAP
|