Cargando…

Applicable differential geometry /

This is an introduction to geometrical topics that are useful in applied mathematics and theoretical physics, including manifolds, metrics, connections, Lie groups, spinors and bundles, preparing readers for the study of modern treatments of mechanics, gauge fields theories, relativity and gravitati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Crampin, M.
Otros Autores: Pirani, F. A. E. (Felix Arnold Edward), 1928-2015
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1986.
Colección:London Mathematical Society lecture note series ; 59.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn818665368
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121119s1986 enka ob 001 0 eng d
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d N$T  |d OCLCF  |d YDXCP  |d OCLCQ  |d OCLCA  |d OCLCQ  |d AGLDB  |d YDX  |d OCLCO  |d ESU  |d OCLCQ  |d UAB  |d OCLCQ  |d VTS  |d REC  |d OCLCO  |d STF  |d OCLCA  |d AU@  |d OCLCO  |d M8D  |d UKAHL  |d OCLCQ  |d VLY  |d INARC  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 846492923  |a 985346282  |a 985390685  |a 1148016475  |a 1162436819  |a 1241941715 
020 |a 9780511623905  |q (electronic bk.) 
020 |a 0511623909  |q (electronic bk.) 
020 |a 9781107087187  |q (electronic bk.) 
020 |a 110708718X  |q (electronic bk.) 
020 |a 1316086747 
020 |a 9781316086742 
020 |a 1107099552 
020 |a 9781107099555 
020 |a 1107093392 
020 |a 9781107093393 
020 |a 1107090229 
020 |a 9781107090224 
020 |z 0521231906 
020 |z 9780521231909 
029 1 |a DEBBG  |b BV043057044 
029 1 |a DEBSZ  |b 446445312 
035 |a (OCoLC)818665368  |z (OCoLC)846492923  |z (OCoLC)985346282  |z (OCoLC)985390685  |z (OCoLC)1148016475  |z (OCoLC)1162436819  |z (OCoLC)1241941715 
050 4 |a QA641  |b .C73 1986eb 
072 7 |a MAT  |x 012030  |2 bisacsh 
080 |a 514.7 
082 0 4 |a 516.3/6  |2 22 
084 |a 31.52  |2 bcl 
084 |a *53-01  |2 msc 
084 |a 22-01  |2 msc 
084 |a 53A45  |2 msc 
084 |a 53C05  |2 msc 
084 |a 53C80  |2 msc 
084 |a SI 320  |2 rvk 
084 |a SK 370  |2 rvk 
084 |a MAT 530f  |2 stub 
049 |a UAMI 
100 1 |a Crampin, M. 
245 1 0 |a Applicable differential geometry /  |c M. Crampin, F.A.E. Pirani. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1986. 
300 |a 1 online resource (394 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 59 
504 |a Includes bibliographical references (pages 383-385) and index. 
588 0 |a Print version record. 
520 |a This is an introduction to geometrical topics that are useful in applied mathematics and theoretical physics, including manifolds, metrics, connections, Lie groups, spinors and bundles, preparing readers for the study of modern treatments of mechanics, gauge fields theories, relativity and gravitation. The order of presentation corresponds to that used for the relevant material in theoretical physics: the geometry of affine spaces, which is appropriate to special relativity theory, as well as to Newtonian mechanics, is developed in the first half of the book, and the geometry of manifolds, which is needed for general relativity and gauge field theory, in the second half. Analysis is included not for its own sake, but only where it illuminates geometrical ideas. The style is informal and clear yet rigorous; each chapter ends with a summary of important concepts and results. In addition there are over 650 exercises, making this a book which is valuable as a text for advanced undergraduate and postgraduate students. 
505 0 |a Cover; Title; Copyright; CONTENTS; Preface; 0. THE BACKGROUND: VECTOR CALCULUS; 1. Vectors; 2. Derivatives; 3. Coordinates; 4. The Range and Summation Conventions; Note to Chapter 0; 1. AFFINE SPACES; 1. Affine Spaces; 2. Lines and Planes; 3. Affine Spaces Modelled on Quotients and Direct Sums; 4. Affine Maps; 5. Affine Maps of Lines and Hyperplanes; Summary of Chapter 1; Notes to Chapter 1; 2. CURVES, FUNCTIONS AND DERIVATIVES; 1. Curves and Functions; 2. Tangent Vectors; 3. Directional Derivatives; 4. Cotangent Vectors; 5. Induced Maps; 6. Curvilinear Coordinates; 7. Smooth Maps 
505 8 |a 8. Parallelism9. Covariant Derivatives; Summary of Chapter 2; Notes to Chapter 2; 3. VECTOR FIELDS AND FLOWS; 1. One-parameter Affine Groups; 2. One-parameter Groups: the General Case; 3. Flows; 4. Flows Associated with Vector Fields; 5. Lie Transport; 6. Lie Difference and Lie Derivative; 7. The Lie Derivative of a Vector Field as a Directional Derivative; 8. Vector Fields as Differential Operators; 9. Brackets and Commutators; 10. Covector Fields and the Lie Derivative; 11. Lie Derivative and Covariant Derivative Compared; 12. The Geometrical Significance of the Bracket 
505 8 |a 2. The Exterior Derivative3. Properties of the Exterior Derivative; 4. Lie Derivatives of Forms; 5. Volume Forms and the Divergence of a Vector Field; 6. A Formula Relating Lie and Exterior Derivatives; 8. Closed and Exact Forms; Summary of Chapter 5; 6. FROBENIUS'S THEOREM; 1. Distributions and Integral Submanifolds; Section 1; Section 2; 2. Necessary Conditions for Integrability; 3. Sufficient Conditions for Integrability; 4. Special Coordinate Systems; 5. Applications: Partial Differential Equations; 6. Application: Darboux's Theorem; 7. Application: Hamilton-Jacobi Theory 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Differential. 
650 0 |a Mechanics. 
650 2 |a Mechanics 
650 6 |a Géométrie différentielle. 
650 6 |a Mécanique. 
650 7 |a mechanics (physics)  |2 aat 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Geometry, Differential.  |2 fast  |0 (OCoLC)fst00940919 
650 7 |a Mechanics.  |2 fast  |0 (OCoLC)fst01013446 
650 7 |a Differentialgeometrie  |2 gnd 
650 7 |a Einführung  |2 gnd 
650 1 7 |a Differentiaalmeetkunde.  |2 gtt 
650 1 7 |a Toepassingen.  |2 gtt 
650 7 |a Géométrie différentielle.  |2 ram 
650 7 |a Differensialgeometri.  |2 tekord 
655 4 |a Einführung. 
700 1 |a Pirani, F. A. E.  |q (Felix Arnold Edward),  |d 1928-2015. 
776 0 8 |i Print version:  |a Crampin, M.  |t Applicable differential geometry.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986  |z 0521231906  |w (DLC) 81018188  |w (OCoLC)7998355 
830 0 |a London Mathematical Society lecture note series ;  |v 59.  |w (OCoLC)788783964 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570486  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24076275 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478632 
938 |a EBSCOhost  |b EBSC  |n 570486 
938 |a Internet Archive  |b INAR  |n applicablediffer0000cram 
938 |a YBP Library Services  |b YANK  |n 10734741 
938 |a YBP Library Services  |b YANK  |n 10762212 
938 |a YBP Library Services  |b YANK  |n 10794828 
938 |a YBP Library Services  |b YANK  |n 9619606 
994 |a 92  |b IZTAP