Cargando…

Nonstandard analysis and its applications /

This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cutland, Nigel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York : Cambridge University Press, 1988.
Colección:London Mathematical Society student texts ; 10.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn818223030
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121115s1988 enk ob 101 0 eng d
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d N$T  |d IDEBK  |d OCLCF  |d YDXCP  |d OCL  |d OCLCQ  |d AGLDB  |d YDX  |d OCLCO  |d OCLCQ  |d UAB  |d OCLCQ  |d VTS  |d REC  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCQ  |d OCL  |d AJS  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 846492891 
020 |a 9781139172110  |q (electronic bk.) 
020 |a 1139172115  |q (electronic bk.) 
020 |a 9781107087934  |q (electronic bk.) 
020 |a 1107087937  |q (electronic bk.) 
020 |z 052135109X 
020 |z 9780521351096 
020 |z 0521359473 
020 |z 9780521359474 
029 1 |a DEBBG  |b BV043057283 
029 1 |a DEBSZ  |b 446450235 
035 |a (OCoLC)818223030  |z (OCoLC)846492891 
050 4 |a QA299.82  |b .N65 1988eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
082 0 4 |a 519.4  |2 22 
084 |a 31.40  |2 bcl 
084 |a 31.46  |2 bcl 
084 |a *00B25  |2 msc 
084 |a 03-06  |2 msc 
084 |a SK 130  |2 rvk 
049 |a UAMI 
245 0 0 |a Nonstandard analysis and its applications /  |c edited by Nigel Cutland. 
260 |a Cambridge [England] ;  |a New York :  |b Cambridge University Press,  |c 1988. 
300 |a 1 online resource (xiii, 346 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 10 
500 |a Papers presented at a conference held at the University of Hull in 1986. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject. 
505 0 |a Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS 
505 8 |a I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem 
505 8 |a III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example 
505 8 |a III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982)) 
505 8 |a 2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Nonstandard mathematical analysis  |v Congresses. 
650 0 |a Nonstandard mathematical analysis  |x Congresses. 
650 6 |a Analyse mathématique non standard  |x Congrès. 
650 6 |a Analyse mathématique non standard  |v Congrès. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Nonstandard mathematical analysis  |2 fast 
650 7 |a Nonstandard-Analysis  |2 gnd 
650 7 |a Analyse mathématique non standard.  |2 ram 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Cutland, Nigel. 
776 0 8 |i Print version:  |t Nonstandard analysis and its applications.  |d Cambridge, [England] ; New York : Cambridge University Press, 1988  |z 052135109X  |w (DLC) 88016194  |w (OCoLC)18013779 
830 0 |a London Mathematical Society student texts ;  |v 10. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570393  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH22950065 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478646 
938 |a EBSCOhost  |b EBSC  |n 570393 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25773435 
938 |a YBP Library Services  |b YANK  |n 9249013 
938 |a YBP Library Services  |b YANK  |n 10734764 
938 |a YBP Library Services  |b YANK  |n 10762235 
994 |a 92  |b IZTAP