Cargando…

Local fields /

The p-adic numbers, the earliest of local fields, were introduced by Hensel some 70 years ago as a natural tool in algebra number theory. Today the use of this and other local fields pervades much of mathematics, yet these simple and natural concepts, which often provide remarkably easy solutions to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cassels, J. W. S. (John William Scott)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986.
Colección:London Mathematical Society student texts ; 3.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn817968639
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121114s1986 enka ob 001 0 eng d
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d IDEBK  |d N$T  |d E7B  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d REC  |d OCLCO  |d STF  |d AU@  |d OCLCO  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AJS  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 852899038  |a 853360373  |a 977472739  |a 985210429  |a 985385300  |a 990745037  |a 1001697694  |a 1003384802  |a 1108951809 
020 |a 9781139171885  |q (electronic bk.) 
020 |a 1139171887  |q (electronic bk.) 
020 |a 9781107087644  |q (electronic bk.) 
020 |a 1107087643  |q (electronic bk.) 
020 |a 9781107093850 
020 |a 1107093856 
020 |z 0521304849 
020 |z 9780521304849 
020 |z 0521315255 
020 |z 9780521315258 
029 1 |a DEBBG  |b BV043057025 
029 1 |a DEBSZ  |b 391498762 
029 1 |a DEBSZ  |b 446444987 
035 |a (OCoLC)817968639  |z (OCoLC)852899038  |z (OCoLC)853360373  |z (OCoLC)977472739  |z (OCoLC)985210429  |z (OCoLC)985385300  |z (OCoLC)990745037  |z (OCoLC)1001697694  |z (OCoLC)1003384802  |z (OCoLC)1108951809 
050 4 |a QA247  |b .C34 1986eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.3  |2 22 
084 |a 31.14  |2 bcl 
084 |a 31.51  |2 bcl 
084 |a SK 230  |2 rvk 
084 |a MAT 123f  |2 stub 
049 |a UAMI 
100 1 |a Cassels, J. W. S.  |q (John William Scott) 
245 1 0 |a Local fields /  |c J.W.S. Cassels. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1986. 
300 |a 1 online resource (xiv, 360 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 3 
504 |a Includes bibliographical references (pages 352-357) and index. 
588 0 |a Print version record. 
520 |a The p-adic numbers, the earliest of local fields, were introduced by Hensel some 70 years ago as a natural tool in algebra number theory. Today the use of this and other local fields pervades much of mathematics, yet these simple and natural concepts, which often provide remarkably easy solutions to complex problems, are not as familiar as they should be. This book, based on postgraduate lectures at Cambridge, is meant to rectify this situation by providing a fairly elementary and self-contained introduction to local fields. After a general introduction, attention centres on the p-adic numbers and their use in number theory. There follow chapters on algebraic number theory, diophantine equations and on the analysis of a p-adic variable. This book will appeal to undergraduates, and even amateurs, interested in number theory, as well as to graduate students. 
505 0 |a Cover; Series Page; Title; Copyright; PREFACE; CONTENTS; LEITFADEN; NOTATIONAL CONVENTIONS; CHAPTER ONE: INTRODUCTION; 1 VALUATIONS; 2 REMARKS; 3 AN APPLICATION; CHAPTER TWO: GENERAL PROPERTIES; 1 DEFINITIONS AND BASICS; 2 VALUATIONS ON THE RATIONALS; 3 INDEPENDENCE OF VALUATIONS; 4 COMPLETENESS; 5 FORMAL SERIES AND A THEOREM OF EISENSTEIN; CHAPTER THREE: ARCHIMEDEAN VALUATIONS; 1 INTRODUCTION; 2 SOME LEMMAS; 3 COMPLETION OF PROOF; CHAPTER FOUR: NON-ARCHIMEDEAN VALUATIONS. SIMPLE PROPERTIES; 1 DEFINITIONS AND BASICS; 2 AN APPLICATION TO FINITE GROUPS OF RATIONAL MATRICES; 3 HENSEL'S LEMMA 
505 8 |a 4 ELEMENTARY ANALYSIS5 A USEFUL EXPANSION; 6 AN APPLICATION TO RECURRENT SEQUENCES; CHAPTER FIVE: EMBEDDING THEOREM; 1 INTRODUCTION; 2 THREE LEMMAS; 3 PROOF OF THEOREM; 4 APPLICATION. A THEOREM OF SELBERG; 5 APPLICATION. THE THEOREM OF MAHLER AND LECH; CHAPTER SIX: TRANSCENDENTAL EXTENSIONS. FACTORIZATION; 1 INTRODUCTION; 2 GAUSS' LEMMA AND EISENSTEIN IRREDUCIBILITY; 3 NEWTON POLYGON; 4 FACTORIZATION OF PURE POLYNOMIALS; 5 WEIERSTRASS PREPARATION THEOREM; CHAPTER SEVEN: ALGEBRAIC EXTENSIONS (COMPLETE FIELDS); 1 INTRODUCTION; 2 UNIQUENESS; 3 EXISTENCE; 4 RESIDUE CLASS FIELDS; 5 RAMIFICATION 
505 8 |a 6 DISCRIMINANTS7 COMPLETELY RAMIFIED EXTENSIONS; 8 ACTION OF GALOIS; CHAPTER EIGHT: P-ADIC FIELDS; 1 INTRODUCTION; 2 UNRAMIFIED EXTENSIONS; 3 NON-COMPLETENESS OF Qp; 4 ""KRONECKER-WEBER"" THEOREM; CHAPTER NINE: ALGEBRAIC EXTENSIONS (INCOMPLETE FIELDS); 1 INTRODUCTION; 2 PROOF OF THEOREM AND COROLLARIES; 3 INTEGERS AND DISCRIMINANTS; 4 APPLICATION TO CYCLOTOMIC FIELDS; 5 ACTION OF GALOIS; 6 APPLICATION. QUADRATIC RECIPROCITY; CHAPTER TEN: ALGEBRAIC NUMBER FIELDS; 1 INTRODUCTION; 2 PRODUCT FORMULA; 3 ALGEBRAIC INTEGERS; 4 STRONG APPROXIMATION THEOREM; 5 DIVISORS. RELATION TO IDEAL THEORY 
505 8 |a 6 EXISTENCE THEOREMS7 FINITENESS OF THE CLASS NUMBER; 8 THE UNIT GROUP; 9 APPLICATION TO DIOPHANTINE EQUATIONS. RATIONAL SOLUTIONS; 10 APPLICATION TO DIOPHANTINE EQUATIONS. INTEGRAL SOLUTIONS; 11 THE DISCRIMINANT; 12 THE KRONECKER-WEBER THEOREM; 13 STATISTICS OF PRIME DECOMPOSITION; CHAPTER ELEVEN: DIOPHANTINE EQUATIONS; I INTRODUCTION; 2 HASSE PRINCIPLE FOR TERNARY QUADRATICS; 3 CURVES OF GENUS 1. GENERALITIES; 4 CURVES OF GENUS 1. A SPECIAL CASE; CHAPTER TWELVE: ADVANCED ANALYSIS; 1 INTRODUCTION; 2 ELEMENTARY FUNCTIONS; 3 ANALYTIC CONTINUATION; 4 MEASURE ON Zp; 5 THE ZETA FUNCTION 
505 8 |a 6 L-FUNCTIONS7 MAHLER'S EXPANSION; CHAPTER THIRTEEN: A THEOREM OF BOREL AND DWORK; 1 INTRODUCTION; 2 SOME LEMMAS; 3 PROOF; APPENDIX A: RESULTANTS AND DISCRIMINANTS; APPENDIX B: NORMS, TRACES AND CHARACTERISTIC POLYNOMIALS; APPENDIX C: MINKOWSKI'S CONVEX BODY THEOREM; APPENDIX D: SOLUTION OF EQUATIONS IN FINITE FIELDS; APPENDIX E: ZETA AND L-FUNCTIONS AT NEGATIVE INTEGERS; APPENDIX F: CALCULATION OF EXPONENTIALS; REFERENCES; INDEX 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Local fields (Algebra) 
650 6 |a Corps locaux (Algèbre) 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Local fields (Algebra)  |2 fast  |0 (OCoLC)fst01001252 
650 7 |a Lokaler Körper  |2 gnd 
650 1 7 |a Lichamen (wiskunde)  |2 gtt 
650 7 |a ÁLGEBRA.  |2 larpcal 
650 7 |a Corps locaux (algèbre)  |2 ram 
650 7 |a Algèbre.  |2 ram 
776 0 8 |i Print version:  |a Cassels, J.W.S. (John William Scott).  |t Local fields.  |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986  |z 0521304849  |w (DLC) 85047934  |w (OCoLC)12262799 
830 0 |a London Mathematical Society student texts ;  |v 3. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570388  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH22950053 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478640 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1179004 
938 |a ebrary  |b EBRY  |n ebr10733652 
938 |a EBSCOhost  |b EBSC  |n 570388 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25836205 
938 |a YBP Library Services  |b YANK  |n 10862012 
938 |a YBP Library Services  |b YANK  |n 10866252 
938 |a YBP Library Services  |b YANK  |n 10869749 
938 |a YBP Library Services  |b YANK  |n 9249001 
994 |a 92  |b IZTAP