Cargando…

Presentations of groups /

The aim of this book is to provide an introduction to combinatorial group theory. Any reader who has completed first courses in linear algebra, group theory and ring theory will find this book accessible. The emphasis is on computational techniques but rigorous proofs of all theorems are supplied. T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Johnson, D. L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, U.K. ; New York, NY, USA : Cambridge University Press, 1997.
Edición:2nd ed.
Colección:London Mathematical Society student texts ; 15.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn817925523
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121114s1997 enka ob 001 0 eng d
040 |a CAMBR  |b eng  |e pn  |c CAMBR  |d N$T  |d OCLCF  |d YDXCP  |d OCLCQ  |d MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d REC  |d OCLCO  |d STF  |d AU@  |d OCLCO  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCA  |d OCLCQ  |d AJS  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 845253414  |a 846492799  |a 976861230  |a 985210751  |a 985405398 
020 |a 9781139168410  |q (electronic bk.) 
020 |a 113916841X  |q (electronic bk.) 
020 |a 9781107089037  |q (electronic bk.) 
020 |a 1107089034  |q (electronic bk.) 
020 |a 9781107095236 
020 |a 1107095239 
020 |z 0521585422 
020 |z 9780521585422 
029 1 |a AU@  |b 000055894688 
029 1 |a DEBBG  |b BV043057600 
029 1 |a DEBSZ  |b 382999061 
029 1 |a DEBSZ  |b 446456470 
035 |a (OCoLC)817925523  |z (OCoLC)845253414  |z (OCoLC)846492799  |z (OCoLC)976861230  |z (OCoLC)985210751  |z (OCoLC)985405398 
050 4 |a QA174  |b .J64 1997eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 22 
084 |a 31.21  |2 bcl 
084 |a SK 260  |2 rvk 
049 |a UAMI 
100 1 |a Johnson, D. L. 
245 1 0 |a Presentations of groups /  |c D.L. Johnson. 
250 |a 2nd ed. 
260 |a Cambridge, U.K. ;  |a New York, NY, USA :  |b Cambridge University Press,  |c 1997. 
300 |a 1 online resource (x, 216 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society student texts ;  |v 15 
504 |a Includes bibliographical references (pages 201-209) and index. 
588 0 |a Print version record. 
520 |a The aim of this book is to provide an introduction to combinatorial group theory. Any reader who has completed first courses in linear algebra, group theory and ring theory will find this book accessible. The emphasis is on computational techniques but rigorous proofs of all theorems are supplied. This new edition has been revised throughout, including new exercises and an additional chapter on proving that certain groups are infinite. 
505 0 |a Cover; Title; Copyright; Dedication; CONTENTS; PREFACE TO THE SECOND EDITION; CHAPTER 1 FREE GROUPS; 1. Definition and elementary properties; 1.1 Definition and elementary properties; 2. Existence of F(X); 1.2 Existence of F(X); 1.3 Further properties of F(X); 3. Further properties of F(X); 1.3 Further properties of F(X); Exercises; CHAPTER 2 SCHREIER'S METHOD; 1. The well-ordering of F; 2.1 The well-ordering of F; 2. The Schreier transversal; 2.2 The Schreier transversal; 3. The Schreier generators; 4. Decomposition of the set A; 5. Freeness of the generators B; 6. Conclusion; Exercises 
505 8 |a CHAPTER 3 NIELSEN'S METHOD1. The finitely-generated case; 2. Example 1; 3. The general case; 4. Further applications; Exercises; CHAPTER 4 FREE PRESENTATIONS OF GROUPS; 1. Basic concepts; 2. Induced homomorphisms; 3. Direct products; 4. Tietze transformations; 5. van Kampen diagrams; Exercises; CHAPTER 5 SOME POPULAR GROUPS; 1. The quaternions; 2. The Heisenberg group; 3. Symmetric groups; 4. Semi-direct products; 5. Groups of symmetries; 6. Polynomials under substitution; 7. The rational numbers; Exercises; CHAPTER 6 FINITELY-GENERATED ABELIAN GROUPS; 1. Groups-made-abelian 
505 8 |a 2. Free abelian groups3. Change of generators; 4. The invariant factor theorem for matrices; 5. The basis theorem; Exercises; CHAPTER 7 FINITE GROUPS WITH FEW RELATIONS; 1. Metacyclic groups; 2. Interesting groups with three generators; 3. Cyclically-presented groups; Exercises; CHAPTER 8 COSET ENUMERATION; 1. The basic method; 2. A refinement; Exercises; CHAPTER 9 PRESENTATIONS OF SUBGROUPS; 1. The method; 2. Alternating groups; 3. Braid groups; 4. von Dyck groups; 5. Triangle groups; 6. Free products; 7. HNN-extensions; 8. The Schur multiplicator; Exercises 
505 8 |a CHAPTER 10 PRESENTATIONS OF GROUP ExTENSIONS1. Basic concepts; 2. The main theorem; 3. Special cases; (S) Semi-direct products; (A) Extensions with abelian kernel; (Z) Central extensions; (D) The direct product; 4. Finite p-groups; Exercises; CHAPTER 11 RELATION MODULES; 1. G-modules; 2. The augmentation ideal; 3. Derivations; 4. Free differential calculus; 5. The fundamental isomorphism; Exercises; CHAPTER 12 AN ALGORITHM FOR N/N'; 1. The Jacobian; 2. The proof; 3. Examples; Exercises; CHAPTER 13 FINITE p-GROUPS; 1. Review of elementary properties; 2. Power-commutator presentations 
505 8 |a 3. mod p modulesExercises; CHAPTER 14 THE NILPOTENT QUOTIENT ALGORITHM; 1. The algorithm; 2. An example; 3. An improvement; Exercises; CHAPTER 15 THE GOLOD-SHAFAREVICH THEOREM; 1. The proof; 2. An example; 3. Related results; Exercises; CHAPTER 16 PROVING SOME GROUPS INFINITE; 1. Dimension subgroups; 2. The Gaschiitz-Newman formulae; 3. Newman's criterion; 4. Fibonacci update; Exercises; Guide to the literature and references; INDEX; Dramatis Personae 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Presentations of groups (Mathematics) 
650 6 |a Présentations de groupes (Mathématiques) 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Presentations of groups (Mathematics)  |2 fast 
650 7 |a Gruppentheorie  |2 gnd 
650 7 |a TEORIA DOS GRUPOS.  |2 larpcal 
650 7 |a COHOMOLOGIA DE GRUPOS.  |2 larpcal 
650 7 |a ÁLGEBRA HOMOLÓGICA.  |2 larpcal 
650 7 |a ÁLGEBRA.  |2 larpcal 
776 0 8 |i Print version:  |a Johnson, D.L.  |t Presentations of groups.  |b 2nd ed.  |d Cambridge, U.K. ; New York, NY, USA : Cambridge University Press, 1997  |z 0521585422  |w (DLC) 96036823  |w (OCoLC)35688069 
830 0 |a London Mathematical Society student texts ;  |v 15. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570482  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH22949889 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478703 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1179075 
938 |a EBSCOhost  |b EBSC  |n 570482 
938 |a YBP Library Services  |b YANK  |n 10734780 
938 |a YBP Library Services  |b YANK  |n 10762252 
938 |a YBP Library Services  |b YANK  |n 9248833 
938 |a YBP Library Services  |b YANK  |n 10737457 
994 |a 92  |b IZTAP