Cargando…

Ergodic theorems /

Ergodic Theorems (De Gruyter Studies in Mathematics).

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krengel, Ulrich, 1937-
Otros Autores: Brunel, Antoine
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : Walter de Gruyter, 1985.
Colección:De Gruyter studies in mathematics ; 6.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn815508061
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 850228s1985 gw ob 001 0 eng d
010 |z  85004457  
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCF  |d OCLCE  |d OCLCQ  |d COO  |d OCLCQ  |d AZK  |d UIU  |d COCUF  |d MOR  |d PIFAG  |d OCLCQ  |d IGB  |d AGLDB  |d U3W  |d D6H  |d CN8ML  |d STF  |d WRM  |d OCLCQ  |d VTS  |d OCLCQ  |d NRAMU  |d INT  |d ICG  |d S9I  |d OCLCQ  |d AU@  |d CEF  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCO  |d QGK  |d OCLCQ 
016 7 |a 000003820548  |2 AU 
019 |a 752636406  |a 961493393  |a 962647697  |a 974670431  |a 974770871  |a 988445721  |a 992002630  |a 1013487003  |a 1018035960  |a 1037794349  |a 1038516186  |a 1043653946  |a 1057910025  |a 1077230655  |a 1100907127  |a 1119001855  |a 1119105563  |a 1153549066  |a 1161538867  |a 1181941885  |a 1192412083  |a 1259070030 
020 |a 9783110844641  |q (electronic bk.) 
020 |a 3110844648  |q (electronic bk.) 
020 |z 0899250246  |q (U.S.) 
020 |z 3110084783 
020 |z 9783110084788 
020 |z 9780899250243  |q (U.S.) 
024 7 |a 10.1515/9783110844641  |2 doi 
029 1 |a AU@  |b 000053288353 
029 1 |a NZ1  |b 14974566 
035 |a (OCoLC)815508061  |z (OCoLC)752636406  |z (OCoLC)961493393  |z (OCoLC)962647697  |z (OCoLC)974670431  |z (OCoLC)974770871  |z (OCoLC)988445721  |z (OCoLC)992002630  |z (OCoLC)1013487003  |z (OCoLC)1018035960  |z (OCoLC)1037794349  |z (OCoLC)1038516186  |z (OCoLC)1043653946  |z (OCoLC)1057910025  |z (OCoLC)1077230655  |z (OCoLC)1100907127  |z (OCoLC)1119001855  |z (OCoLC)1119105563  |z (OCoLC)1153549066  |z (OCoLC)1161538867  |z (OCoLC)1181941885  |z (OCoLC)1192412083  |z (OCoLC)1259070030 
042 |a dlr 
050 4 |a QA313  |b .K74 1985eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.4/2  |2 19 
084 |a 31.41  |2 bcl 
049 |a UAMI 
100 1 |a Krengel, Ulrich,  |d 1937- 
245 1 0 |a Ergodic theorems /  |c Ulrich Krengel ; with a supplement by Antoine Brunel. 
260 |a Berlin ;  |a New York :  |b Walter de Gruyter,  |c 1985. 
300 |a 1 online resource (vii, 357 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a De Gruyter studies in mathematics ;  |v 6 
504 |a Includes bibliographical references and index. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a 2.4 The splitting theorem of Jacobs-Deleeuw-GlicksbergChapter 3: Positive contractions in L1; 3.1 The Hopf decomposition; 3.2 The Chacon-Ornstein theorem; 3.3 Brunel's lemma and the identification of the limit; 3.4 Existence of finite invariant measures; 3.5 The subadditive ergodic theorem for positive contractions in L1; 3.6 An example with divergence of Cesàro averages; 3.7 More on the filling scheme; Chapter 4: Extensions of the L1-theory; 4.1 Non positive contractions in L1; 4.2 Vector valued ergodic theorems; 4.3 Power bounded operators and harmonic functions. 
505 0 |a 7.2 Local ergodic theorems for multiparameter and non positive semigroups, and for vector valued functionsChapter 8: Subsequences and generalized means; 8.1 Strong convergence and mixing; 8.2 Pointwise convergence; Chapter 9: Special topics; 9.1 Ergodic theorems in von Neumann algebras; 9.2 Entropy and information; 9.3 Nonlinear nonexpansive mappings; 9.4 Miscellanea; Supplement: Harris Processes, Special Functions, Zero-Two-Law (by Antoine Brunei); Bibliography; Notation; Index. 
505 0 |a Chapter 1: Measure preserving and null preserving point mappings; 1.1 Von Neumann's mean ergodic theorem, ergodicity; 1.2 Birkhoff's ergodic theorem; 1.3 Recurrence; 1.4 Shift transformations and stationary processes; 1.5 Kingman's subadditive ergodic theorem and the multiplicative ergodic theorem of Oseledec; 1.6 Relatives of the maximal ergodic theorem; 1.7 Some general tools and principles; Chapter 2: Mean ergodic theory; 2.1 The mean ergodic theorem; 2.2 Uniform convergence; 2.3 Weak mixing, continuous spectrum and multiple recurrence. 
520 |a Ergodic Theorems (De Gruyter Studies in Mathematics). 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Ergodic theory. 
650 6 |a Théorie ergodique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Ergodic theory.  |2 fast  |0 (OCoLC)fst00914656 
650 7 |a Théorie ergodique.  |2 ram 
700 1 |a Brunel, Antoine. 
776 0 8 |i Print version:  |a Krengel, Ulrich, 1937-  |t Ergodic theorems.  |d Berlin ; New York : Walter de Gruyter, 1985  |w (DLC) 85004457 
830 0 |a De Gruyter studies in mathematics ;  |v 6. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560070  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10599528 
938 |a EBSCOhost  |b EBSC  |n 560070 
994 |a 92  |b IZTAP