Cargando…

Inner models and large cardinals /

Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zeman, Martin, 1964-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : Walter de Gruyter, 2002.
Colección:De Gruyter series in logic and its applications, 5
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn815507724
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 010830s2002 gw ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d OCLCQ  |d N$T  |d OCLCF  |d DEBBG  |d OCLCQ  |d YDXCP  |d COO  |d OCLCQ  |d DEBSZ  |d AGLDB  |d OCLCQ  |d VTS  |d AU@  |d STF  |d OCLCQ  |d AJS  |d OCLCQ  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9783110857818  |q (electronic bk.) 
020 |a 3110857812  |q (electronic bk.) 
020 |z 3110163683  |q (cloth ;  |q alk. paper) 
020 |z 9783110163681 
024 7 |a 10.1515/9783110857818  |2 doi 
029 1 |a DEBBG  |b BV042351744 
029 1 |a DEBBG  |b BV043060815 
029 1 |a DEBSZ  |b 446511927 
029 1 |a DEBSZ  |b 478285353 
035 |a (OCoLC)815507724 
050 4 |a QA248  |b .Z46 2002eb 
072 7 |a MAT  |x 028000  |2 bisacsh 
082 0 4 |a 511.3/22  |2 21 
049 |a UAMI 
100 1 |a Zeman, Martin,  |d 1964- 
245 1 0 |a Inner models and large cardinals /  |c Martin Zeman. 
260 |a Berlin ;  |a New York :  |b Walter de Gruyter,  |c 2002. 
300 |a 1 online resource (xi, 369 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a De Gruyter series in logic and its applications,  |x 1438-1893 ;  |v 5 
504 |a Includes bibliographical references (pages 359-363) and index. 
520 |a Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria. 
520 |a Main description: This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory. 
520 |a Review text: "Insgesamt ist Zeman ein ausgezeichnetes Lehrbuch über Kernmodelltheorie gelungen. Es ist sehr gut zum Selbststudium geeignet."H.-D. Donder, Jahresbericht der Deutschen Mathematiker-Vereinigung 106, 3-2004 
505 0 |a Preface -- 1 Fine Structure -- 1.1 Acceptable J-Structures -- 1.2 The V1-Projectum -- 1.3 Downward Extension of Embeddings Lemmata -- 1.4 Upward Extension of Embeddings Lemma -- 1.5 Iterated Projecta -- 1.6 V*-Relations -- 1.7 V0(n)-Embeddings -- 1.8 Substitution and Good Functions -- 1.9 Standard Parameters -- 1.10 Two Applications to L -- 1.11 More on Downward Extensions of Embeddings -- 1.12 Witnesses and Solidity -- Notes -- 2 Extenders and Coherent Structures -- 2.1 Extenders -- 2.2 The Hypermeasure Representation of Extenders -- 2.3 Amenability -- 2.4 Coherent Structures. 
505 8 |a 2.5 Extendibility -- 2.6 Strong Cardinals -- Notes -- 3 Fine Ultrapowers -- 3.1 The *-Ultrapower Construction -- 3.2 Some Special Preservation Properties -- 3.3 When F Is Close to M -- 3.4 Extendibility -- 3.5 k-Ultrapowers -- 3.6 Pseudoultrapowers -- Notes -- 4 Mice and Iterability -- 4.1 Premice -- 4.2 Iterations -- 4.3 Copying and the Dodd-Jensen Lemma -- 4.4 Comparison Process -- 4.5 Some Iterability Criteria -- 4.6 Bicephali -- Notes -- 5 Solidity and Condensation -- 5.1 Cores and Coiterations -- 5.2 The Solidity Theorem -- 5.3 Consequences of Solidity -- 5.4 The Canonical Ordering of Mice. 
505 8 |a 5.5 Condensation Lemma -- 5.6 Upwards Extensions to Premice -- Notes -- 6 Extender Models -- 6.1 Extender Models and Iterations -- 6.2 The Canonical Ordering of Weasels -- 6.3 Universality -- 6.4 The Model Kc -- 6.5 0** -- 6.6 Weak Covering -- Notes -- 7 The Core Model -- 7.1 Inductive Definition of K -- 7.2 Steel's Definition of K -- 7.3 The Existence of K -- 7.4 Embeddings of K and Generic Absoluteness -- 7.5 Weak Covering for K -- Notes -- 8 One Strong Cardinal -- 8.1 Premice -- 8.2 Properties of Mice -- 8.3 Extender Models up to One Strong Cardinal -- Notes -- 9 Overlapping Extenders. 
505 8 |a 9.1 Premice and Iteration Trees -- 9.2 Copying and the Dodd-Jensen Property -- 9.3 Solidity and Condensation -- 9.4 Uniqueness of Weil-Founded Branches -- 9.5 Towards the Ultimate Model Kc -- Notes -- Bibliography -- Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Constructibility (Set theory) 
650 0 |a Large cardinals (Mathematics) 
650 6 |a Constructibilité (Théorie des ensembles) 
650 6 |a Grands cardinaux (Nombres) 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a Constructibility (Set theory)  |2 fast 
650 7 |a Large cardinals (Mathematics)  |2 fast 
653 0 |a Constructibility (Set theory) 
653 0 |a Large cardinals (Mathematics) 
776 0 8 |i Print version:  |a Zeman, Martin, 1964-  |t Inner models and large cardinals.  |d Berlin ; New York : Walter de Gruyter, 2002  |w (DLC) 2001047562 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=559707  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10599359 
938 |a EBSCOhost  |b EBSC  |n 559707 
938 |a YBP Library Services  |b YANK  |n 9656119 
994 |a 92  |b IZTAP